Abstract
This article is a contribution to the algebraic theory of automata, but it also contains an application to Büchi’s sequential calculus. The polynomial closure of a class of languagesC is the set of languages that are finite unions of languages of the formL 0 a 1 L 1 ···a nLn, where thea i’s are letters and theL i’s are elements ofC. Our main result is an algebraic characterization, via the syntactic monoid, of the polynomial closure of a variety of languages. We show that the algebraic operation corresponding to the polynomial closure is a certain Mal’cev product of varieties. This result has several consequences. We first study the concatenation hierarchies similar to the dot-depth hierarchy, obtained by counting the number of alternations between boolean operations and concatenation. For instance, we show that level 3/2 of the Straubing hierarchy is decidable and we give a simplified proof of the partial result of Cowan on level 2. We propose a general conjecture for these hierarchies. We also show that if a language and its complement are in the polynomial closure of a variety of languages, then this language can be written as a disjoint union of marked unambiguous products of languages of the variety. This allows us to extend the results of Thomas on quantifier hierarchies of first-order logic.
Similar content being viewed by others
References
J. Almeida, Equations for pseudovarieties,Formal Properties of Finite Automata and Applications, J.-E. Pin (ed.), Lecture Notes in Computer Science, Vol. 386, Springer-Verlag, Berlin, 1989, pp. 148–164.
J. Almeida, Implicit operations on finiteJ-trivial semigroups and a conjecture of I. Simon,J. Pure Appl. Algebra 69 (1990), 205–218.
J. Almeida,Finite Semigroups and Universal Algebra, Series in Algebra, Vol. 3, World Scientific, Singapore, 1994.
J. Almeida and P. Weil, Relatively free profinite monoids: an introduction and examples, inSemigroups, Formal Languages and Groups, J. Fountain (ed.), NATO Advanced Study Institute Series, Kluwer, Dordrecht, 1995, pp. 73–117.
M. Arfi, Polynomial operations and rational languages,Proc. 4th STACS, Lecture Notes in Computer Science, Vol. 247, Springer-Verlag, Berlin, 1987, pp. 198–206.
M. Arfi, Opérations polynomiales et hiérarchies de concaténation,Theoret. Comput. Sci. 91 (1991), 71–84.
A. Arnold, Topological characterizations of infinite behaviours of transition systems, inAutomata, Languages and Programming, J. Diaz (ed.), Lecture Notes in Computer Science, Vol. 154, Springer-Verlag, Berlin, 1983, pp. 28–38.
C. J. Ash, Inevitable sequences and a proof of the type II conjecture, inProceedings of the Monash Conference on Semigroup Theory, World Scientific, Singapore, 1991, pp. 31–42.
C. J. Ash, Inevitable graphs: A proof of the type II conjecture and some related decision procedures,Internat. J. Algebra Comput. 1 (1991), 127–146.
F. Blanchet-Sadri, Games, equations and the dot-depth hierarchy,Comput. Math. Appl. 18 (1989), 809–822.
F. Blanchet-Sadri, On dot-depth two,Inform. Théor. Appl. 24 (1990), 521–529.
F. Blanchet-Sadri, Games, equations and dot-depth two monoids,Discrete Appl. Math. 39 (1992), 99–111.
F. Blanchet-Sadri, Equations and dot-depth one,Semigroup Forum 47 (1993), 305–317.
F. Blanchet-Sadri, On a complete set of generators for dot-depth two,Discrete Appl. Math. 50 (1994), 1–25.
F. Blanchet-Sadri, Some logical characterizations of the dot-depth hierarchy and applications,J. Comput. System Sci. 51 (1995), 324–337.
S. L. Bloom, Varieties of ordered algebras,J. Comput. System Sci. 13 (1976), 33–49.
J. A. Brzozowski, Hierarchies of aperiodic languages,RAIRO Inform. Théor. 10 (1976), 33–49.
J. A. Brzozowski and R. Knast, The dot-depth hierarchy of star-free languages is infinite,J. Comput. System Sci. 16 (1978), 37–55.
J. A. Brzozowski and I. Simon, Characterizations of locally testable languages,Discrete Math. 4 (1973), 243–271.
D. Cowan, Inverse monoids of dot-depth 2,Internat. J. Algebra Comput. 3 (1993), 411–424.
S. Eilenberg,Automata, Languages and Machines, Vol. A, Academic Press, New York, 1974.
S. Eilenberg,Automata, Languages and Machines, Vol. B, Academic Press, New York, 1976.
M. Hall, Jr., A topology for free groups and related groups,Ann. of Math.,52 (1950), 127–139.
K. Henckell, S. W. Margolis, J.-E. Pin, and J. Rhodes, Ash’s type II theorem, profinite topology and Malcev products,Internat. J. Algebra Comput. 1 (1991), 411–436.
K. Henckell and J. Rhodes, The theorem of Knast, thePG=BG and type II conjectures, inMonoids and Semigroups with Applications, J. Rhodes (ed.), World Scientific, Singapore, 1991, pp. 453–463.
S. C. Kleene, Representation of events in nerve nets and finite automata, inAutomata studies, C. E. Shannon and J. McCarthy (eds.), Princeton University Press, Princeton, NJ, 1956, pp. 3–42.
R. Knast, A semigroup characterization of dot-depth one languages,RAIRO Inform. Théor. 17 (1983), 321–330.
R. Knast, Some theorems on graph congruences,RAIRO Inform. Théor. 17 (1983), 331–342.
G. Lallement,Semigroups and Combinatorial Applications, Wiley, New York, 1979.
M. Lothaire,Combinatorics on Words, Cambridge University Press, Cambridge, 1982.
S. W. Margolis and J.-E. Pin, Product of group languages,Proc. FCT Conference, Lecture Notes in Computer Science, Vol. 199, Springer-Verlag, Berlin, 1985, pp. 285–299.
R. McNaughton and S. Papert,Counter-Free Automata, MIT Press, Cambridge, MA, 1971.
D. Perrin, Automata, inHandbook of Theoretical Computer Science, Vol. B, J. Van Leeuwen (ed.), Elsevier, Amsterdam, 1990, Chapter 1.
D. Perrin and J.-E. Pin, First order logic and star-free sets,J. Comput. System Sci. 32 (1986), 393–406.
J.-E. Pin, Propiétés syntactiques du produit non ambigu.Proc. 7th ICALP, Lecture Notes in Computer Science, Vol. 85, Springer-Verlag, Berlin, 1980, pp. 483–499.
J.-E. Pin, Hiérarchies de concaténation,RAIRO Inform. Théor. 18 (1984), 23–46.
J.-E. Pin, Finite group topology andp-adic topology for free monoids, inProc. 12th ICALP, Lecture Notes in Computer Science, Vol. 194, Springer-Verlag, Berlin, 1985, pp. 445–455.
J.-E. Pin,Variétés de languages formels, Masson, Paris, 1984. English translation:Varieties of Formal Languages, Plenum, New York, 1986.
J.-E. Pin, A property of the Schützenberger product,Semigroup Forum 35 (1987), 53–62.
J.-E. Pin, Topologies for the free monoid,J. Algebra 137 (1991), 297–337.
J.-E. Pin, Polynomial closure of group languages and open sets of the Hall topology,Proc. ICALP 1994, Lecture Notes in Computer Science, Vol. 820, Springer-Verlag, Berlin, 1994, pp. 424–435.
J.-E. Pin, Finite semigroups and recognizable languages: an introduction, inSemigroups, Formal Languages and Groups. J. Fountain (ed.), NATO Advanced Study Institute Series, Kluwer, Dordrecht, 1995, pp. 1–32.
J.-E. Pin,BG=PG, a success story, inSemigroups, Formal Languages and Groups, J. Fountain (ed.), NATO Advanced Study Institute Series, Kluwer, Dordrecht, 1995, pp. 33–47.
J.-E. Pin, A variety theorem without complementation,Izv. Vyssh. Uchebn. Zaved. Mat. 39 (1995), 80–90. English version,Russian Math. 39 (1995), 74–83.
J.-E. Pin, Logic, semigroups and automata on words,Ann. Math. Artificial Intel. 16 (1996), 343–384.
J.-E. Pin, Polynomial closure of group languages and open sets of the Hall topology,Theoret. Comput. Sci. 169 (1996), 185–200.
J.-E. Pin and C. Reutenauer, A conjecture on the Hall topology for the free group,Notices London Math. Soc. 23 (1991), 356–362.
J.-E. Pin and H. Straubing, Monoids of upper triangular matrices, inSemigroups, Colloquia Mathematica Societatis Janos Bolyai, Vol. 39, North-Holland, Amsterdam, 1981, pp. 259–272.
J.-E. Pin, H. Straubing, and D. Thérien, Locally trivial categories and unambiguous concatenation,J. Pure Appl. Algebra 52 (1988), 297–311.
J.-E. Pin and P. Weil, Profinite semigroups, Mal’cev products and identities,J. Algebra 182 (1996), 604–626.
J.-E. Pin and P. Weil, A Reiterman theorem for pseudovarieties of finite first-order structures,Algebra Universalis 35 (1996), 577–595.
J. Reiterman, The Birkhoff theorem for finite algebras,Algebra Universalis 14 (1982), 1–10.
Ch. Reutenauer,Sur les variétés de langages et de monoïdes, Lecture Notes in Computer Science, Vol. 67, Springer-Verlag, Berlin, 1979, pp. 260–265.
Ch. Reutenauer, Une topologie du monoïde libre,Semigroup Forum 18 (1979), 33–49.
Ch. Reutenauer, Sur mon article “Une topologie du monoïde libre”,Semigroup Forum 22 (1981), 93–95.
L. Ribes and P. A. Zalesskii, On the profinite topology on a free group,Bull. London Math. Soc. 25 (1993), 37–43.
M. P. Schützenberger, On finite monoids having only trivial subgroups,Inform. and Control 8 (1965), 190–194.
M. P. Schützenberger, Sur le produit de concaténation non ambigu,Semigroup Forum 13 (1976), 47–75.
I. Simon, Piecewise testable events,Proc. 2nd GI Conf., Lecture Notes in Computer Science, Vol. 33, Springer-Verlag, Berlin, 1975, pp. 214–222.
I. Simon, Factorization forests of finite height,Theoret. Comput. Sci. 72 (1990), 65–94.
I. Simon, A short proof of the factorization forest theorem, inTree Automata and Languages, M. Nivat and A. Podelski (eds.), Elsevier, Amsterdam, 1992, pp. 433–438.
I. Simon, The product of rational languages,Proc. ICALP 1993, Lecture Notes in Computer Science, Vol. 700, Springer-Verlag, Berlin, 1993, pp. 430–444.
J. Stern, Characterization of some classes of regular events,Theoret. Comp. Sci. 35 (1985), 17–42.
H. Straubing, Aperiodic homomorphisms and the concatenation product of recognizable sets,J. Pure Appl. Algebra 15 (1979), 319–327.
H. Straubing, A generalization of the Schützenberger product of finite monoids,Theoret. Comput. Sci. 13 (1981), 137–150.
H. Straubing, Relational morphisms and operations on recognizable sets,RAIRO Inform. Théor. 15 (1981), 149–159.
H. Straubing, Finite semigroups varieties of the formV *D,J. Pure Appl. Algebra 36 (1985), 53–94.
H. Straubing, Semigroups and languages of dot-depth two,Theoret. Comp. Sci. 58 (1988), 361–378.
H. Straubing and D. Thérien, Partially ordered finite monoids and a theorem of I. Simon,J. Algebra 119 (1985), 393–399.
H. Straubing and P. Weil, On a conjecture concerning dot-depth two languages,Theoret. Comp. Sci. 104 (1992), 161–183.
D. Thérien, Classification of finite monoids: the language approach,Theoret. Comput. Sci. 14 (1981), 195–208.
W. Thomas, Classifying regular events in symbolic logic,J. Comput. System Sci. 25 (1982), 360–375.
P. Weil, Inverse monoids and the dot-depth hierarchy, Ph.D. Dissertation, University of Nebraska, Lincoln, 1988.
P. Weil, Inverse monoids of dot-depth two,Theoret. Comput. Sci. 66 (1989), 233–245.
P. Weil, Implicit operations on pseudovarieties: an introduction, inMonoids and Semigroups with Applications, J. Rhodes (ed.), World Scientific, Singapore, 1991, pp. 89–104.
P. Weil, Closure of varieties of languages under products with counter,J. Comput. System Sci. 45 (1992), 316–339.
P. Weil, Some results on the dot-depth hierarchy,Semigroup Forum 46 (1993), 352–370.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Pin, J.E., Weil, P. Polynomial closure and unambiguous product. Theory of Computing Systems 30, 383–422 (1997). https://doi.org/10.1007/BF02679467
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF02679467