[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Polynomial closure and unambiguous product

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

This article is a contribution to the algebraic theory of automata, but it also contains an application to Büchi’s sequential calculus. The polynomial closure of a class of languagesC is the set of languages that are finite unions of languages of the formL 0 a 1 L 1 ···a nLn, where thea i’s are letters and theL i’s are elements ofC. Our main result is an algebraic characterization, via the syntactic monoid, of the polynomial closure of a variety of languages. We show that the algebraic operation corresponding to the polynomial closure is a certain Mal’cev product of varieties. This result has several consequences. We first study the concatenation hierarchies similar to the dot-depth hierarchy, obtained by counting the number of alternations between boolean operations and concatenation. For instance, we show that level 3/2 of the Straubing hierarchy is decidable and we give a simplified proof of the partial result of Cowan on level 2. We propose a general conjecture for these hierarchies. We also show that if a language and its complement are in the polynomial closure of a variety of languages, then this language can be written as a disjoint union of marked unambiguous products of languages of the variety. This allows us to extend the results of Thomas on quantifier hierarchies of first-order logic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Almeida, Equations for pseudovarieties,Formal Properties of Finite Automata and Applications, J.-E. Pin (ed.), Lecture Notes in Computer Science, Vol. 386, Springer-Verlag, Berlin, 1989, pp. 148–164.

    Chapter  Google Scholar 

  2. J. Almeida, Implicit operations on finiteJ-trivial semigroups and a conjecture of I. Simon,J. Pure Appl. Algebra 69 (1990), 205–218.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Almeida,Finite Semigroups and Universal Algebra, Series in Algebra, Vol. 3, World Scientific, Singapore, 1994.

    MATH  Google Scholar 

  4. J. Almeida and P. Weil, Relatively free profinite monoids: an introduction and examples, inSemigroups, Formal Languages and Groups, J. Fountain (ed.), NATO Advanced Study Institute Series, Kluwer, Dordrecht, 1995, pp. 73–117.

    Chapter  Google Scholar 

  5. M. Arfi, Polynomial operations and rational languages,Proc. 4th STACS, Lecture Notes in Computer Science, Vol. 247, Springer-Verlag, Berlin, 1987, pp. 198–206.

    Google Scholar 

  6. M. Arfi, Opérations polynomiales et hiérarchies de concaténation,Theoret. Comput. Sci. 91 (1991), 71–84.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Arnold, Topological characterizations of infinite behaviours of transition systems, inAutomata, Languages and Programming, J. Diaz (ed.), Lecture Notes in Computer Science, Vol. 154, Springer-Verlag, Berlin, 1983, pp. 28–38.

    Chapter  Google Scholar 

  8. C. J. Ash, Inevitable sequences and a proof of the type II conjecture, inProceedings of the Monash Conference on Semigroup Theory, World Scientific, Singapore, 1991, pp. 31–42.

    Google Scholar 

  9. C. J. Ash, Inevitable graphs: A proof of the type II conjecture and some related decision procedures,Internat. J. Algebra Comput. 1 (1991), 127–146.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Blanchet-Sadri, Games, equations and the dot-depth hierarchy,Comput. Math. Appl. 18 (1989), 809–822.

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Blanchet-Sadri, On dot-depth two,Inform. Théor. Appl. 24 (1990), 521–529.

    MathSciNet  MATH  Google Scholar 

  12. F. Blanchet-Sadri, Games, equations and dot-depth two monoids,Discrete Appl. Math. 39 (1992), 99–111.

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Blanchet-Sadri, Equations and dot-depth one,Semigroup Forum 47 (1993), 305–317.

    Article  MathSciNet  MATH  Google Scholar 

  14. F. Blanchet-Sadri, On a complete set of generators for dot-depth two,Discrete Appl. Math. 50 (1994), 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Blanchet-Sadri, Some logical characterizations of the dot-depth hierarchy and applications,J. Comput. System Sci. 51 (1995), 324–337.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. L. Bloom, Varieties of ordered algebras,J. Comput. System Sci. 13 (1976), 33–49.

    Article  Google Scholar 

  17. J. A. Brzozowski, Hierarchies of aperiodic languages,RAIRO Inform. Théor. 10 (1976), 33–49.

    MathSciNet  Google Scholar 

  18. J. A. Brzozowski and R. Knast, The dot-depth hierarchy of star-free languages is infinite,J. Comput. System Sci. 16 (1978), 37–55.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. A. Brzozowski and I. Simon, Characterizations of locally testable languages,Discrete Math. 4 (1973), 243–271.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Cowan, Inverse monoids of dot-depth 2,Internat. J. Algebra Comput. 3 (1993), 411–424.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Eilenberg,Automata, Languages and Machines, Vol. A, Academic Press, New York, 1974.

    MATH  Google Scholar 

  22. S. Eilenberg,Automata, Languages and Machines, Vol. B, Academic Press, New York, 1976.

    MATH  Google Scholar 

  23. M. Hall, Jr., A topology for free groups and related groups,Ann. of Math.,52 (1950), 127–139.

    Article  MathSciNet  Google Scholar 

  24. K. Henckell, S. W. Margolis, J.-E. Pin, and J. Rhodes, Ash’s type II theorem, profinite topology and Malcev products,Internat. J. Algebra Comput. 1 (1991), 411–436.

    Article  MathSciNet  MATH  Google Scholar 

  25. K. Henckell and J. Rhodes, The theorem of Knast, thePG=BG and type II conjectures, inMonoids and Semigroups with Applications, J. Rhodes (ed.), World Scientific, Singapore, 1991, pp. 453–463.

    Google Scholar 

  26. S. C. Kleene, Representation of events in nerve nets and finite automata, inAutomata studies, C. E. Shannon and J. McCarthy (eds.), Princeton University Press, Princeton, NJ, 1956, pp. 3–42.

    Google Scholar 

  27. R. Knast, A semigroup characterization of dot-depth one languages,RAIRO Inform. Théor. 17 (1983), 321–330.

    MathSciNet  MATH  Google Scholar 

  28. R. Knast, Some theorems on graph congruences,RAIRO Inform. Théor. 17 (1983), 331–342.

    MathSciNet  Google Scholar 

  29. G. Lallement,Semigroups and Combinatorial Applications, Wiley, New York, 1979.

    MATH  Google Scholar 

  30. M. Lothaire,Combinatorics on Words, Cambridge University Press, Cambridge, 1982.

    Google Scholar 

  31. S. W. Margolis and J.-E. Pin, Product of group languages,Proc. FCT Conference, Lecture Notes in Computer Science, Vol. 199, Springer-Verlag, Berlin, 1985, pp. 285–299.

    Google Scholar 

  32. R. McNaughton and S. Papert,Counter-Free Automata, MIT Press, Cambridge, MA, 1971.

    MATH  Google Scholar 

  33. D. Perrin, Automata, inHandbook of Theoretical Computer Science, Vol. B, J. Van Leeuwen (ed.), Elsevier, Amsterdam, 1990, Chapter 1.

    Google Scholar 

  34. D. Perrin and J.-E. Pin, First order logic and star-free sets,J. Comput. System Sci. 32 (1986), 393–406.

    Article  MathSciNet  MATH  Google Scholar 

  35. J.-E. Pin, Propiétés syntactiques du produit non ambigu.Proc. 7th ICALP, Lecture Notes in Computer Science, Vol. 85, Springer-Verlag, Berlin, 1980, pp. 483–499.

    Google Scholar 

  36. J.-E. Pin, Hiérarchies de concaténation,RAIRO Inform. Théor. 18 (1984), 23–46.

    MathSciNet  MATH  Google Scholar 

  37. J.-E. Pin, Finite group topology andp-adic topology for free monoids, inProc. 12th ICALP, Lecture Notes in Computer Science, Vol. 194, Springer-Verlag, Berlin, 1985, pp. 445–455.

    Google Scholar 

  38. J.-E. Pin,Variétés de languages formels, Masson, Paris, 1984. English translation:Varieties of Formal Languages, Plenum, New York, 1986.

    Google Scholar 

  39. J.-E. Pin, A property of the Schützenberger product,Semigroup Forum 35 (1987), 53–62.

    Article  MathSciNet  MATH  Google Scholar 

  40. J.-E. Pin, Topologies for the free monoid,J. Algebra 137 (1991), 297–337.

    Article  MathSciNet  MATH  Google Scholar 

  41. J.-E. Pin, Polynomial closure of group languages and open sets of the Hall topology,Proc. ICALP 1994, Lecture Notes in Computer Science, Vol. 820, Springer-Verlag, Berlin, 1994, pp. 424–435.

    Google Scholar 

  42. J.-E. Pin, Finite semigroups and recognizable languages: an introduction, inSemigroups, Formal Languages and Groups. J. Fountain (ed.), NATO Advanced Study Institute Series, Kluwer, Dordrecht, 1995, pp. 1–32.

    Chapter  Google Scholar 

  43. J.-E. Pin,BG=PG, a success story, inSemigroups, Formal Languages and Groups, J. Fountain (ed.), NATO Advanced Study Institute Series, Kluwer, Dordrecht, 1995, pp. 33–47.

    Chapter  Google Scholar 

  44. J.-E. Pin, A variety theorem without complementation,Izv. Vyssh. Uchebn. Zaved. Mat. 39 (1995), 80–90. English version,Russian Math. 39 (1995), 74–83.

    MathSciNet  Google Scholar 

  45. J.-E. Pin, Logic, semigroups and automata on words,Ann. Math. Artificial Intel. 16 (1996), 343–384.

    Article  MathSciNet  MATH  Google Scholar 

  46. J.-E. Pin, Polynomial closure of group languages and open sets of the Hall topology,Theoret. Comput. Sci. 169 (1996), 185–200.

    Article  MathSciNet  MATH  Google Scholar 

  47. J.-E. Pin and C. Reutenauer, A conjecture on the Hall topology for the free group,Notices London Math. Soc. 23 (1991), 356–362.

    Article  MathSciNet  MATH  Google Scholar 

  48. J.-E. Pin and H. Straubing, Monoids of upper triangular matrices, inSemigroups, Colloquia Mathematica Societatis Janos Bolyai, Vol. 39, North-Holland, Amsterdam, 1981, pp. 259–272.

    Google Scholar 

  49. J.-E. Pin, H. Straubing, and D. Thérien, Locally trivial categories and unambiguous concatenation,J. Pure Appl. Algebra 52 (1988), 297–311.

    Article  MathSciNet  MATH  Google Scholar 

  50. J.-E. Pin and P. Weil, Profinite semigroups, Mal’cev products and identities,J. Algebra 182 (1996), 604–626.

    Article  MathSciNet  MATH  Google Scholar 

  51. J.-E. Pin and P. Weil, A Reiterman theorem for pseudovarieties of finite first-order structures,Algebra Universalis 35 (1996), 577–595.

    Article  MathSciNet  MATH  Google Scholar 

  52. J. Reiterman, The Birkhoff theorem for finite algebras,Algebra Universalis 14 (1982), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  53. Ch. Reutenauer,Sur les variétés de langages et de monoïdes, Lecture Notes in Computer Science, Vol. 67, Springer-Verlag, Berlin, 1979, pp. 260–265.

    Google Scholar 

  54. Ch. Reutenauer, Une topologie du monoïde libre,Semigroup Forum 18 (1979), 33–49.

    Article  MathSciNet  MATH  Google Scholar 

  55. Ch. Reutenauer, Sur mon article “Une topologie du monoïde libre”,Semigroup Forum 22 (1981), 93–95.

    Article  MathSciNet  MATH  Google Scholar 

  56. L. Ribes and P. A. Zalesskii, On the profinite topology on a free group,Bull. London Math. Soc. 25 (1993), 37–43.

    Article  MathSciNet  MATH  Google Scholar 

  57. M. P. Schützenberger, On finite monoids having only trivial subgroups,Inform. and Control 8 (1965), 190–194.

    Article  MATH  Google Scholar 

  58. M. P. Schützenberger, Sur le produit de concaténation non ambigu,Semigroup Forum 13 (1976), 47–75.

    Article  MathSciNet  MATH  Google Scholar 

  59. I. Simon, Piecewise testable events,Proc. 2nd GI Conf., Lecture Notes in Computer Science, Vol. 33, Springer-Verlag, Berlin, 1975, pp. 214–222.

    Google Scholar 

  60. I. Simon, Factorization forests of finite height,Theoret. Comput. Sci. 72 (1990), 65–94.

    Article  MathSciNet  MATH  Google Scholar 

  61. I. Simon, A short proof of the factorization forest theorem, inTree Automata and Languages, M. Nivat and A. Podelski (eds.), Elsevier, Amsterdam, 1992, pp. 433–438.

    Google Scholar 

  62. I. Simon, The product of rational languages,Proc. ICALP 1993, Lecture Notes in Computer Science, Vol. 700, Springer-Verlag, Berlin, 1993, pp. 430–444.

    Google Scholar 

  63. J. Stern, Characterization of some classes of regular events,Theoret. Comp. Sci. 35 (1985), 17–42.

    Article  MATH  Google Scholar 

  64. H. Straubing, Aperiodic homomorphisms and the concatenation product of recognizable sets,J. Pure Appl. Algebra 15 (1979), 319–327.

    Article  MathSciNet  MATH  Google Scholar 

  65. H. Straubing, A generalization of the Schützenberger product of finite monoids,Theoret. Comput. Sci. 13 (1981), 137–150.

    Article  MathSciNet  MATH  Google Scholar 

  66. H. Straubing, Relational morphisms and operations on recognizable sets,RAIRO Inform. Théor. 15 (1981), 149–159.

    MathSciNet  MATH  Google Scholar 

  67. H. Straubing, Finite semigroups varieties of the formV *D,J. Pure Appl. Algebra 36 (1985), 53–94.

    Article  MathSciNet  MATH  Google Scholar 

  68. H. Straubing, Semigroups and languages of dot-depth two,Theoret. Comp. Sci. 58 (1988), 361–378.

    Article  MathSciNet  MATH  Google Scholar 

  69. H. Straubing and D. Thérien, Partially ordered finite monoids and a theorem of I. Simon,J. Algebra 119 (1985), 393–399.

    Article  Google Scholar 

  70. H. Straubing and P. Weil, On a conjecture concerning dot-depth two languages,Theoret. Comp. Sci. 104 (1992), 161–183.

    Article  MathSciNet  MATH  Google Scholar 

  71. D. Thérien, Classification of finite monoids: the language approach,Theoret. Comput. Sci. 14 (1981), 195–208.

    Article  MathSciNet  MATH  Google Scholar 

  72. W. Thomas, Classifying regular events in symbolic logic,J. Comput. System Sci. 25 (1982), 360–375.

    Article  MathSciNet  MATH  Google Scholar 

  73. P. Weil, Inverse monoids and the dot-depth hierarchy, Ph.D. Dissertation, University of Nebraska, Lincoln, 1988.

    Google Scholar 

  74. P. Weil, Inverse monoids of dot-depth two,Theoret. Comput. Sci. 66 (1989), 233–245.

    Article  MathSciNet  MATH  Google Scholar 

  75. P. Weil, Implicit operations on pseudovarieties: an introduction, inMonoids and Semigroups with Applications, J. Rhodes (ed.), World Scientific, Singapore, 1991, pp. 89–104.

    Google Scholar 

  76. P. Weil, Closure of varieties of languages under products with counter,J. Comput. System Sci. 45 (1992), 316–339.

    Article  MathSciNet  MATH  Google Scholar 

  77. P. Weil, Some results on the dot-depth hierarchy,Semigroup Forum 46 (1993), 352–370.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pin, J.E., Weil, P. Polynomial closure and unambiguous product. Theory of Computing Systems 30, 383–422 (1997). https://doi.org/10.1007/BF02679467

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02679467

Keywords

Navigation