Abstract
Coherence has become an essential tool in the description of functional relationships between EEG signals generated within various brain areas. In EEG coherence analysis, the reference signal has an important influence, as an improper reference can distort the results and make them impossible to interpret. In the study, EEG are recorded from one volunteer in 11 sessions, with electrodes selected according to the international 10–20 system against FCz. Additional electrodes are placed on the nose, chin and left and right ear lobes, and recordings are made also against FCz. This enables re-referencing of the stored EEG signals for different reference sites, averaged reference signals, common average reference, Laplacian and bipolar. Coherence values using single reference electrodes depend on the reference site to a large extent. Reliable results are obtained using averaged non-cephalic signals as reference ([A1+A2]/2). Coherence based on FCz yields slightly lower or higher values than that based on non-cephalic reference sites. Completely different results yield common average reference recordings, Laplacian and bipolar recordings, probably owing to the cancellation effect of essential signal portions using these techniques. A mathematical model for coherence based on signal-to-noise ratios is introduced to explain the experimental findings: the model demonstrates that noisy reference signals lead to coherence increase, whereas a coherent amount in the reference signal leads to coherence decrease.
Similar content being viewed by others
References
Andrew, C. andPfurtscheller, G. (1996): ‘Dependence of coherrence measurements on EEG derivation type,’Med. Biol. Eng. Comput.,34, (3), pp. 232–238.
Biggins C. A., Fein, G., Raz, J. andAmir, A. (1991): ‘Artifactually high coherences result from using spherical spline computation of sclap current density,’Electrencephal. Clin. Neurophysiol.,79, pp. 413–419
Biggins, C. A., Ezekiel, F. andFein, G. (1992): ‘Spline computation of scalp current density and coherence: A reply to Perrin,’Electroencephal. Clin. Neurophysiol.,83, pp. 172–174
Chen, A. C. N. andRappelsberger, P. (1994): ‘Brain and human pain: topographic amplitude and coherence mapping,’Brain Topogr.,7, (2), pp. 129–140
Cooper, R., Osselton, J. W. andShaw, J. C. (1980): ‘EEG technology,’ (3rd edn. (Butterworths, London)
Fein, G., Raz, J., Brown, F. F. andMerrin, E. L. (1988): ‘Common reference coherence data are confounded by power and phase,’Electroencephal. Clin. Neurophysiol.,69, pp. 581–584
French, C. C. andBaumont, J. G. (1984): ‘A critical review of EEG coherence studies of hemisphere function,’Int. J. Psychophysiol.,1, pp. 241–254
Goldman, D. (1950): ‘The clinical use of the average reference electrode in monopolar recording,’Electroencephal. Clin. Neurophysiol.,2, pp. 209.
Harmony, T., Fernandez, T., Rodriguez, M., Reyes, A., Marosi, E. andBernal, J. (1993): ‘Test-retest reliability of EEG spectral parameters during cognitive tasks: II Coherence,’Int. J. Neurosci.,68, pp. 263–271
Harmony, T., Marosi, E., Fernandez, T., Bernal, J., Silva, J., Rodriguez, M. andReyes, A. (1994): ‘EEG coherence in patients with brain lesions,’Int. J. Neurosci.,74, pp. 203–226
Hjorth, B. (1975): ‘An on-line transformation of EEG scalp potentials into orthogonal source derivations,’Electroencephal. Clin. Neurophysiol.,39, pp. 526–530.
Hjorth, B. (1980): ‘Source derivation simplifies topological EEG interpretation,’Am. J. EEG Technol.,20, pp. 121–132
Jasper, H. H. (1958): ‘The ten twenty electrode system of the International Federation,’Electroencephal. Clin. Neurophysiol.,10, pp. 371–375
Jenkins, G. M. andWatts, D. G. (1968): ‘Spectral analysis and its application,’ (Holden Day, San Francisco)
Koles, Z. J. andFlor-Henry, P. (1986): ‘The effect of brain function on coherence patterns in the bipolar EEG,’Int. J. Psychophysiol.,5, pp. 63–71
Lacroix, D., Rappelsberger, P., Rescher, B., Steinbacher, K., Thau, K. andPetsche, H. (1993): ‘Amplitude and coherence mapping of cognitive processing in healthy and schizophrenic males’,inRother, M. andZwiener, U. (Eds.): ‘Quantitative EEG analysis—clinical utility and new methods’ (Universitaetsverlag, Jena) pp. 187–191
Marosi, E., Harmony, T., Sanchez, L., Becker, J., Bernal, J., Reyes, A., de Leon, A. E. D., Rodriguez, M. andFernandez, T. (1992): ‘Maturation of the coherence of EEG activity in normal and learning-disable children,’Electroencephal. Clin. Neurophysiol.,83, pp. 351–357
McAlaster, R. (1992): ‘Postnatal cerebral maturation in Down's dyndrome children: A development EEG coherence study,’Int. J. Neurosci.,65, pp. 221–237
Montplaisir, J., Nielsen, T., Cote, J., Boivin, D., Rouleau, I. andLapierre, G. (1990): ‘Interhemispheric EEG coherence before and after partial callosotomy,’Clin. Electroencephal.,21, (1), pp. 42–47
Nielsen, T., Montplaisir, J. andLassonde, M. (1993): ‘Decreased interhemispheric EEG coherence during sleep in agenesis of the corpus callosum,’Eur. Neurol.,33, pp. 173–176
Nunez, P. L. (1981): ‘Electrical fields of the brain,’ (Oxford Press, New York)
Nunez, P. L. (1997): ‘EEG coherence measures in medical and cognitive science: a general overview of experimental methods, computer algorithms, and accuracy,inWitte, H., Zwiemer, U., Schack, B. andDoering, A. (Eds.): ‘Quantitative and topological EEG and MEG analysis’ (Druckhaus Mayer, Jena) pp. 385–392
Nuwer, M. R. (1988): ‘Quantitative EEG: I. Techniques and problems of frequency analysis and topographic mapping,’J. Clin. Neurophysiol.,5, (1), pp. 1–43
Offner, F. F. (1950): ‘The EEG as potential mapping: The value of the average monopolar reference,’Electroencephal. Clin. Neurophysiol.,2, p. 213
Pascual-Marqui, R. D. (1993): ‘The spherical spline Laplacian does not produce artifically high coherences: Comments on two articles by Bigginset al.,’Electroencephal. Clin. Neurophysiol.,87, pp. 62–64
Perrin, F., Pernier, J., Bertrand, O. andEchallier, J. F. (1989): ‘Spherical spline for scalp potential and current density mapping,’Electroencephal. Clin. Neurophysiol.,72, pp. 184–187
Petsche, H., Lacroix, D., Lindner, K., Rappelsberger, P. andSchmidt-Henrich, E. (1992): ‘Thinking with images or thinking with languge: a pilot EEG probability mapping study,’Int. J. Psychophysiol.,12, pp. 31–39
Rappelsberger, P. andPetsche, H. (1988): ‘Probability mapping: power and coherence analysis of cognitive processes,’Brain Topogr.,1, (1), pp. 46–54
Rappelsberger, P. (1989): ‘The reference problem and mapping of coherence: A simulation study,’Brain Topogr.,2, (1,2), pp. 63–72
Rappelsberger, P., Lacroix, D. andPetsche, H. (1993): ‘Amplitude and coherence mapping: its application in psycho- and pathophysiological studies,’inRother, M. andZwiener, U. (Eds.): ‘Quantitative EG analysis—clinical utility and new methods’ (Universitätsverlag GmbH, Jena), pp. 179–286
Rescher, B. andRappelsberger, P. (1996): ‘EEG-changes in amplitude and coherence during a tactile task in females and in males,’J. Psychophysiol.,10, pp. 161–172
Shaw, J. C., O'Connor, K. andOngley, C. (1978): ‘EEG coherence as a measure of cerebral functional organisation,’inBrazier, M. A. B. andPetsche, H. (Eds.): ‘Archectonics of the cerebral cortex’ (IBRO Monograph Series, Raven Press)3, pp. 245–255
Tauscher, J., Fischer, P., Neumeister, A., Rappelsberger, P., Kasper, S. (1998): ‘Low frontal EEG coherence in neuroleptic-free schizophrenic patients,’Biol. Psych. (in press)
Travis, F. (1994): ‘A second linked-reference issue: Possible biasing of power and coherence spectra,’Int. J. Neurosci.,75, pp. 111–117
von Stein, A., Rappelsberger, P., Filz, O. andPetsche, H. (1993): ‘EEG Korrelate bildlicher Vorstellung: Eine Amplituden und Kohärenzuntersuchung,’Z. EEG-EMG,24, pp. 217–224
Weiss, S. andRappelsberger, P. (1996): ‘EEG coherences within the 13–18 Hz band as correlates of a distinct lexical organisation of concrete and abstract nouns in humans,’Neurosci. Lett.,209, pp. 17–20
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Essl, M., Rappelsberger, P. EEG cohererence and reference signals: experimental results and mathematical explanations. Med. Biol. Eng. Comput. 36, 399–406 (1998). https://doi.org/10.1007/BF02523206
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF02523206