[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Characterizing an optimal input in perturbed convex programming

  • Published:
Mathematical Programming Submit manuscript

Abstract

When every feasible stable perturbation of data results in a non-improvement of the optimal value function, then we talk about an ‘optimal input’ or an ‘optimal selection of data”. In this paper we describe such data for convex programs using perturbed saddle points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abrams and L. Kerzner, “A simplified test for optimality”,Journal of Optimization Theory and Applications 25 (1978), 161–170.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Avriel,Nonlinear programming: Analysis and methods, Prentice-Hall Series in Automatic Computation (Prentice-Hall, Englewood Cliffs, 1976).

    MATH  Google Scholar 

  3. M.S. Bazaraa and C.M. Shetty,Foundations of optimization (Springer, New York, 1976).

    MATH  Google Scholar 

  4. A. Ben-Israel, A. Ben-Tal and S. Zlobec,Optimality in nonlinear programming: A feasible directions approach (Wiley-Interscience, New York, 1981).

    MATH  Google Scholar 

  5. A. Ben-Tal and S. Zlobec, “Convex programming and the lexicographic multicriteria problem’.Mathematische Operationsforchung und Statistik, Series Optimization 8 (1977) 61–73.

    MathSciNet  Google Scholar 

  6. B. Brosowski, “On parametric linear optimization”, in: R. Henn, B. Korte and W. Oettli, eds.,Optimization and operations research, Lecture Notes in Economics and Mathematical Systems, Vol. 157 (Springer, Berlin 1978) pp. 37–44.

    Google Scholar 

  7. G.B. Dantzig, J. Folkman and N. Shapiro, “On the continuity of the minimum set of a continuous function”,Journal of Mathematical Analysis and Applications 17 (1967), 519–548.

    Article  MATH  MathSciNet  Google Scholar 

  8. I.I. Eremin and N.N. Astafiev,Introduction to the theory of linear and convex programming (Nauka, Moscow, 1976), [In Russian.]

    MATH  Google Scholar 

  9. J.P. Evans and F.J. Gould, “Stability in nonlinear programming”,Operations Research 18 (1970) 107–118.

    MATH  MathSciNet  Google Scholar 

  10. A.V. Fiacco, “Convergence properties of local solutions of sequences of mathematical programming problems in general spaces”,Journal of Optmization Theory and Applications 13 (1974) 1–12.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Gauvin, “The generalized gradient of a marginal function in mathematical programming”,Mathematics of Operations Research 4 (1979) 458–463.

    MATH  MathSciNet  Google Scholar 

  12. B. Gollan, “On the marginal function in nonsmooth optimization”, Preprint No. 69, Mathematisches Institut der Julius-Maximilians-Universität Würzburg (October 1980).

    Google Scholar 

  13. E.G. Gol'stein, “Duality theory in mathematical programming and its applications (Nauka, Moscow, 1971). [In Russian; also translation published by Akademie-Verlag, Berlin, 1975].

    Google Scholar 

  14. H.J. Greenberg and W.P. Pierskalla, “Extensions of the Evans-Gould stability theorems for mathematical programs”,Operations Research 20 (1972) 143–153.

    MATH  MathSciNet  Google Scholar 

  15. J. Guddat, “Stability in convex quadratic parametric programming”,Mathematische Operationsforschung und Statistik 7 (1976) 223–245.

    MathSciNet  Google Scholar 

  16. M. Guignard, “Generalized Kuhn-Tucker conditions for mathematical programming problems in a Banach space”,SIAM Journal on Control 7 (1969) 232–241.

    Article  MATH  MathSciNet  Google Scholar 

  17. J.-B. Hiriart-Urruty, “Tangent cones, generalized gradients and mathematical programming in Banach spaces”,Mathematics of Operations Research 1 (1979) 79–97.

    Article  MathSciNet  Google Scholar 

  18. W. Krabs, “Stetige Abänderung der Daten bei nichtlinearer Optimierung und ihre Konsequenzen”,Operations Research Verfahren XXV 1 (1977) 93–113.

    Google Scholar 

  19. M.A. Krasnosel'skii, G.M. Vainikko, P.P. Zabreiko, Ya.B. Rutitskii and U.Ya. Stetsenko,Approximate solution of operator equations (Wolters-Noordhoff, Groningen, 1972).

    Google Scholar 

  20. O.L. Mangasarian,Nonlinear programming (McGraw-Hill, New York, 1969).

    MATH  Google Scholar 

  21. D.H. Martin, “On the continuity of the maximum in parametric linear programming”,Journal of Optimization Theory and Applications 17 (1975) 205–210.

    Article  MATH  MathSciNet  Google Scholar 

  22. M.Z. Nashed, “Perturbation analysis of ill-posed problems”, Presented at the Third Symposium on Mathematical Programming with Data Perturbations, The George Washington University. Washington, D.C. (May 21–22, 1981).

  23. F. Nožiĉka, J. Guddat, H. Hollatz and B. Bank,Theorie der linearen parametrische Optimierung (Akademie-Verlag, Berlin, 1974).

    Google Scholar 

  24. V.V. Podinovskii and V.M. Gavrilov,Optimization with respect to successive criteria (Soviet Radio, Moscow, 1975). [In Russian].

    Google Scholar 

  25. S.M. Robinson, “A characterization of stability in linear programming”, MRC Technical Report 1542, University of Wisconsin, Madison (1975).

    Google Scholar 

  26. R.T. Rockafellar,Convex analysis (Princeton University Press, 1970).

  27. I. Stakgold, “Branching of solutions of nonlinear equations”,SIAM Review 13 (1971) 289–332.

    Article  MATH  MathSciNet  Google Scholar 

  28. M.M. Vainberg and V.A. Trenogin,The theory of branching of solutions of non-linear equations (Noordhoff, Leyden, 1974).

    Google Scholar 

  29. A.C. Williams, “Marginal values in linear programming”,Journal of the Society of Industrial and Applied Mathematics 11 (1963) 82–94.

    Article  MATH  Google Scholar 

  30. H. Wolkowicz, “Calculating the cone of directions of constancy”,Journal of Optimization Theory and Applications 25 (1978) 451–457.

    Article  MATH  MathSciNet  Google Scholar 

  31. S. Zlobec and A. Ben-Israel, “Perturbed convex programs: continuity of optimal solutions and optimal values”,Operations Research Verfahren XXXI 1 (1979), 737–749.

    Google Scholar 

  32. S. Zlobec and A. Ben-Israel, “Duality in convex programming: a linearization approach”,Mathematische Operationsforschung und Statistik, Series Optimization 10 (1979) 171–178.

    MATH  MathSciNet  Google Scholar 

  33. S. Zlobec and B. Craven, “Stabilization and calculation of the minimal index set of binding constraints in convex programming”,Mathematische Operationsforschung und Statistik, Series Optimization 12 (1981), 203–220.

    MATH  MathSciNet  Google Scholar 

  34. S. Zlobec, R. Gardner and A. Ben-Israel, “Regions of stability for arbitrarily perturbed convex programs”, in: A. Fiacco, ed.,Mathematical programming with data perturbation (M. Dekker, New York, 1981) pp. 69–89.

    Google Scholar 

  35. S. Zlobec, “Regions of stability for ill-posed convex programs”,Aplikace Matematiky 27 (1981).

  36. S. Zlobec, “Optimal selection of data in convex programming”, Department of Mathematics, McGill University, Montreal, Quebec, Canada (February 1981).

    Google Scholar 

  37. S. Zlobec, “Marginal values for stable perturbations in convex optimization”,Glasnik Matematički (1982).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research partly supported by Natural Sciences and Engineering Council of Canada and le Ministère de l'Education du Québec (F.C.A.C.).

Presented in part at the Third Symposium on Mathematical Programming with Data Perturbations, The George Washington University, Washington, D.C. (May 21–22, 1981).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zlobec, S. Characterizing an optimal input in perturbed convex programming. Mathematical Programming 25, 109–121 (1983). https://doi.org/10.1007/BF02591721

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02591721

Key words

Navigation