[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Designing and reporting on computational experiments with heuristic methods

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

This article discusses the design of computational experiments to test heuristic methods and provides reporting guidelines for such experimentation. The goal is to promote thoughtful, well-planned, and extensive testing of heuristics, full disclosure of experimental conditions, and integrity in and reproducibility of the reported results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aarts, E., van Laarhoven, P., Lenstra, J., and Ulder, N. (1994). A computational study of local search algorithms for job shop scheduling.ORSA Journal on Computing, 6(2), 118–125.

    MATH  Google Scholar 

  • Ahuja, R., Magnanti, T., and Orlin, J. (1993).Network Flows: Theory, Algorithms, and Applications, Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Amini, M., and Barr, R. (1990). Network reoptimization algorithms: A statistically designed comparison.ORSA Journal on Computing, 5(4), 395–409.

    Google Scholar 

  • Arthur, J., and Frendewey, J. (1988). Generating traveling salemen problems with known optimal tours.Journal of the Operational Research Society, 39(2), 153–159.

    Article  MATH  Google Scholar 

  • Arthur, J., and Frendewey, J. (1994). An algorithm for generating minimum cost network flow problems with specific structure and known optimal solutions.Networks, 24(8), 445–454.

    MathSciNet  MATH  Google Scholar 

  • Barr, R., and Hickman, B. (1993). Reporting computational experiments with parallel algorithms: Issues, measures, and experts' opinions.ORSA Journal on Computing, 5(1), 2–18.

    MATH  Google Scholar 

  • Barr, R., and Hickman, B. (1994). Parallelization strategies for the network simplex algorithm.Operations Research, 42(1), 65–80.

    MATH  Google Scholar 

  • Barton, R., and Ivey, Jr., J. (1996). Nelder-mead simplex modifications for simulation optimization. Tech. rep., Department of Industrial and Systems Engineering, Pennsylvania State University, University Park, PA. To appear inManagement Science.

    Google Scholar 

  • Battiti, R., and Tecchiolli, G. (1994). Simulated annealing and tabu search in the long run: A comparison on gap tasks.Computers and Mathematics with Applications, 28(6), 1–8.

    Article  MATH  Google Scholar 

  • Bland, R., Cheriyan, J., Jensen, D., and Ladányi, L. (1993). An empirical study of min cost flow algorithms. In D. Johnson, and C. McGeoch (Eds.),Network Flows and Matching: First DIMACS Implementation Challenge, Vol. 12 ofDIMACS Series in Discrete Mathematics and Theoretical Computer Science (pp. 119–156): Providence, RI: American Mathematical Society.

    Google Scholar 

  • Box, G., and Draper, N. (1969).Evolutionary Operation, A Statistical Method for Process Improvement. New York: John Wiley.

    Google Scholar 

  • Bratley, P., Fox, B., and Schrage, L. (1983).A Guide to Simulation. New York: Springer-Verlag

    MATH  Google Scholar 

  • Cornuejols, G., Sridharan, R., and Thizy, J. (1991). A comparison of heuristics and relaxations for the capacititated plant location problem.European Journal of Operational Research, 50, 280–297.

    Article  MATH  Google Scholar 

  • Crowder, H., Dembo, R., and Mulvey, J. (1980). On reporting computational experiments with mathematical software.ACM Transactions on Mathematical Software, 5, 193–203.

    Article  Google Scholar 

  • Dyer, M., and Frieze, A. (1985). A simple heuristic for thep-centre problem.Operations Research Letters, 3(6), 285–288.

    Article  MathSciNet  MATH  Google Scholar 

  • Feo, T., and Resende, M. (1995). Greedy randomized adaptive search procedures.Journal of Global Optimization, 6, 109–133.

    Article  MathSciNet  MATH  Google Scholar 

  • Fisher, M. (1980). Worst-case analysis of heuristic algorithms.Management Science, 26(1), 1–17.

    MATH  MathSciNet  Google Scholar 

  • Floudas, C., and Pardalos, P. (1990).Collection of Test Problems for Constrained Global Optimization Algorithms, Vol. 455 ofLecture Notes in Computer Science. Springer-Verlag.

  • Garey, M., and Johnson, D. (1979).Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco: Freeman.

    MATH  Google Scholar 

  • Gendreau, M., Hertz, A., and Laporte, G. (1994). A tabu search heuristic for the vehicle routing problem.Management Science, 40(10), 1276–1290.

    MATH  Google Scholar 

  • Gilsinn, J., Hoffman, K., Jackson, R., Leyendecker, E., Saunders, P., and Shier, D. (1977). Methodology and analysis for comparing discrete linearl 1 approximation codes.Communications in Statistics, 136, 399–413.

    Google Scholar 

  • Glover, F. (1989). Tabu search-part I.ORSA Journal on Computing, 1(3), 190–206.

    MATH  Google Scholar 

  • Glover, F., Karney, D., Klingman, D., and Napier, A. (1974). A computational study on start procedures, basis change criteria, and solution algorithms for transportation problems.Management Science, 20, 793–813.

    MathSciNet  MATH  Google Scholar 

  • Golden, B., Assad, A., Wasil, E., and Baker, E. (1986). Experimentation in optimization.European Journal of Operational Research, 27, 1–16.

    MathSciNet  MATH  Google Scholar 

  • Golden, B., and Stewart, W. (1985). Empirical analysis of heuristics. In E. Lawler, J. Lenstra A. Rinnooy Kan, and D. Shmoys (Eds.),The Travelling Salesman Problem, a Guided Tour of Combinatorial Optimization (pp. 207–249). Chichester (U.K.): Wiley.

    Google Scholar 

  • Greenberg, H. (1990). Computational testing: Why, how and how much?ORSA Journal on Computing, 2, 7–11.

    Google Scholar 

  • Held, M., and Karp, R. (1970). The travelling-salesman problem and minimum spanning trees.Operations Research, 18, 1138–1162.

    MathSciNet  MATH  Google Scholar 

  • Held, M., and Karp, R. (1971). The travelling-salesman problem and minimum spanning trees: Part ii.Mathematical Programming, 1, 6–25.

    Article  MathSciNet  MATH  Google Scholar 

  • Hochbaum, D., and Shmoys, D. (1985). A best possible heuristic for thek-center problem.Mathematics of Operations Research, 10(2), 180–184.

    MathSciNet  MATH  Google Scholar 

  • Holland, J. (1975),Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press.

    Google Scholar 

  • Hooker, J. (1994). Needed: An empirical science of algorithms.Operations Research, 42(2), 201–212.

    MATH  Google Scholar 

  • Hooker, J. (1995). Testing heuristics: We have it all wrong.Journal of Heuristics, 1(1), 33–42.

    MATH  MathSciNet  Google Scholar 

  • Hopfield, J., and Tank, D. (1985). Neural computation of decisions in optimization problems.Biological Cybernetics, 52, 141.

    MathSciNet  MATH  Google Scholar 

  • Jackson, R., Boggs, P., Nash, S., and Powell, S. (1990). Report of the ad hoc committee to revise the guidelines for reporting computational experiments in mathematical programming.Mathematical Programing, 49, 413–425.

    Article  MathSciNet  Google Scholar 

  • Jackson, R., and Mulvey, J. (1978). A critical review of comparisons of mathematical programming algorithms and software (1953–1977).J. Research of the National Bureau of Standards, 83, 563–584.

    MathSciNet  MATH  Google Scholar 

  • Johnson, D. (1990). Local optimization and the traveling salesman problem. InProceedings of the 17th Colloquium on Automata, Languages and programming, Lecture Notes in Computer Science 443 (pp. 446–461). Berlin: Springer-Verlag.

    Google Scholar 

  • Johnson, D., Bentley, J., McGeoch, L., and Rothberg, E. (1995). Near-optimal solutions to very lage traveling salesman problems. Tech. rep., monograph, in preparation.

  • Johnson, D., and Papadimitrious, C. (1985). Performance guarantees for heuristics. In E. Lawler, J. Lenstra, A. Rinnooy Kan, and D. Shmoys (Eds.),The Travelling Salesman Problem, A Guided Tour of Combinatorial Optimization (pp. 145–180). Chichester (U.K.): Wiley.

    Google Scholar 

  • Kelly, J., Golden, B., and Assad, A. (1992). Cell suppression: Disclosure protection for sensitive tabular data.Networks, 22(4), 397–417.

    MATH  Google Scholar 

  • Kelly, J., Golden, B., and Assad, A. (1993). Large-scale controlled rounding using tabu search and strategic oscillation.Annals of Operations Research, 41, 69–84.

    Article  MATH  Google Scholar 

  • Klingman, D., and Mote, J. (1987). Computational analysis of large-scale pure networks. Presented at the Joint National Meeting of ORSA/TIMS, New Orleans.

  • Klingman, D., Napier, A., and Stutz, J. (1974). Netgen: A program for generating large scale capacitated assignment, transportation, and minimum cost flow network problems.Management Science, 20, 814–821.

    MathSciNet  MATH  Google Scholar 

  • Knox, J. (1994). Tabu search performance on the symmetric travelling salesman problem.Computers & Operations Research, 21(8), 867–876.

    Article  MATH  Google Scholar 

  • Lawler, E., Lenstra, J., Kan, A. Rinnooy, and Shmoys, D. (1985).The Travelling Salesman Problem, A Guided Tour of Combinatorial Optimization. Chiehester (U.K.): Wiley.

    Google Scholar 

  • Lin, B., and Rardin, R. (1977). Development of a parametric generating procedure for integer programming test problems.Journal of the ACM, 24, 465–472.

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, B., and Rardin, R. (1979). Controlled experimental design for statistical comparison of integer programming algorithms.Management Science, 25(12), 33–43.

    Article  MathSciNet  Google Scholar 

  • Lin, S., and Kernighan, B. (1973). An effective heuristic algorithm for the traveling-salesman problem.Operations Research, 21(2), 498–516.

    MathSciNet  MATH  Google Scholar 

  • Martello, S., and Toth, P. (1990).Knapsack Problems. Chichester (U.K.): Wiley.

    MATH  Google Scholar 

  • Mason, R., Gunst, R., and Hess, J. (1989).Statistical Design and Analysis of Experiments. New York: Wiley.

    Google Scholar 

  • McGeoch, C. (1986).Experimental Analysis of Algorithms. Ph.D. thesis, Computer Science Department, Carnegie Mellon University, Pittsburgh, PA.

    Google Scholar 

  • McGeoch, C. (1995). Toward an experimental method for algorithm simulation.INFORMS Journal on Computing, to appear.

  • McGeoch, C. (1992). Analyzing algorithms by simulation: Variance reduction techniques and simulation speedups.ACM Computing Surveys, 24(5), 195–212.

    Article  Google Scholar 

  • Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. (1953). Equation of state calculation by fast computing machines.Journal of Chemical Physics, 21, 1087–1091.

    Article  Google Scholar 

  • Montgomery, D. (1984).Design and Analysis of Experiments. New York: Wiley.

    Google Scholar 

  • Mulvey, J. (1982).Evaluating Mathematical Programming Techniques. Berlin: Springer-Verlag.

    MATH  Google Scholar 

  • Nance, R., Moose, Jr., R., and Foutz, R. (1987). A statistical technique for comparing heuristics: An example from capacity assignment strategies in computer network design.Communications of the ACM, 30(5), 430–442.

    Article  Google Scholar 

  • Nelder, J., and Mead, R. (1965). A simplex method for function minimization.Computer Journal, 7, 308–313.

    MATH  Google Scholar 

  • Nygard, K., Juell, P., and Kadaba, N. (1990). Neural networks for selecting vehicle routing heuristics.ORSA Journal on Computing, 2(4), 353–364.

    MATH  Google Scholar 

  • O'Neill, R. (1982). A comparison of real-world linear programs and their randomly generated analogs. In J. Mulvey (Ed.),Evaluating Mathematical Programming Techniques (pp. 44–59). Berlin: Springer-Verlag.

    Google Scholar 

  • Rardin, R., and Lin, B. (1982). Test problems for computational experiments—issues and techniques. In J. Mulvey (Ed.),Evaluating Mathematical Programming Techniques (pp. 8–15). Berlin: Springer-Verlag.

    Google Scholar 

  • Reeves, C. (1993a). Evaluation of heuristic performance. In C. Reeves, (Ed.),Modern Heuristic Techniques for Combinatorial Problems. New York: Wiley.

    Google Scholar 

  • Reeves, C. (1993b).Evaluation of Heuristic Performance. New York: Wiley.

    Google Scholar 

  • Reinelt, G. (1991). TSPLIB—a travelling salesman problem library.ORSA Journal on Computing, 3(4), 376–384.

    MATH  Google Scholar 

  • Resende, M., and Ribeiro, C. (1995). A GRASP for graph planarization. Tech. rep., AT&T Bell Laboratories, Murray Hill, NJ.

    Google Scholar 

  • Rothfarb, B., Frank, H., Rosebaum, D., Steiglitz, K., and Kleitman, D. (1970). Optimal design of offshore natural gas pipeline systems.Operations Research, 18, 992–1020.

    Google Scholar 

  • Stewart, W. (1987). An accelerated branch exchange heuristic for the traveling salesman problem.Networks, 17, 423–437.

    MATH  MathSciNet  Google Scholar 

  • Stewart, W., Kelly, J., and Laguna, M. (1995). Solving vehicle routing problems using generalized assignments and tabu search. Tech. rep., Graduate School of Business, College of William and Mary, Williamsburg, VA.

    Google Scholar 

  • Taguchi, G., and Wu, Y.-I. (1979).Introduction to Off-Live Quality Control. Central Japan Quality Control Association, Meieki Nakamura-ku Magaya, Japan.

    Google Scholar 

  • Tufte, E. (1983).The Visual Display of Quantitative Information. Cheshire, CT: Graphics Press.

    Google Scholar 

  • Zanakis, S., Evans, J., and Vazacopoulos, A. (1989). Heuristic methods and applications: A categorized survey.European Journal of Operational Research, 43, 88–110.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barr, R.S., Golden, B.L., Kelly, J.P. et al. Designing and reporting on computational experiments with heuristic methods. J Heuristics 1, 9–32 (1995). https://doi.org/10.1007/BF02430363

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02430363

Key words

Navigation