Abstract
The main problem of interval computations is as follows:given sets of possible valuesX i for variablesx i, and an algorithmf:R n → R, to.estimate the rangef(X 1, ..,X n ) of the possible values off(x 1, ...,x n ). In many real-life, situations setsX i are not intervals. To handle such problems, it is desirable to add set data type and operations with sets to a programming language. it is well known that the entire mathematics can be formulated in terms of sets. So, if we already have a set as a data type, why have anything else. The main reason, is that expression in terms of sets is often clumsy. To avoid this clumsiness, it has been suggested to use not only sets, but alsobags (multisets), in which an element can have multiple occurrences. Bags are used in many areas of Computer Science, and recently, several languages have appeared that use the bag as a basic data type.
In this paper, we explain the main ideas behind bag languages, and we also show:
-
· that bag languages are naturally parallelizable, thus leading to a parallelization of the coresponding generalized interval computations;
-
· and that bag languages can be also helpfully applied to traditional interval computations (where setsX i are intervals).
Abstract
Основная эаяача интериальных бычнслеихй Фомрмулируется слелуюивим обраэом: даны множецтва воэможных эначеххйХ і н алгорнтмf:R n→R: требугся оненить множествоf(X 1,...,X n ) воэможных эначений функиииf(x 1,...,x n ). На иактике множестваХ і час го не явлркются ннтервалами. Чтобх снравнться с такимй эалачамн, жэлагельно лобабить множества как тии ланных и онерхии с множецтвами в ягыки ирорраммнробахия. Иэвество, что вся математика может быть иэложена в терминах множеств. Воэникаег вонрс: если у нас естю множество как тих ланных, эачем нужно что-то еме? Основное воэраженне эакдючается в том, что математнческие концтрукиии нэ множеств часто іромоэлкн. Чтвы нэбежать этого, ирелложено нсноьэокать не толбко множества, но н мулвмлнвжесмга (вашс), вкотрые олин н тот же элемент может вхолить ио нецкодьку паэ. Мульиимножества нсиольеуются во многих областях ннформатики, н в носледнее время воявндосб неслолбло лэыкло лэыков крограммироваинл, в коттрых мылбтиножестба ьсляются основным тихом ланных.
В настояшэй рботе иэлагаются основные кониещум яэыков, иснольэуюушх мулжтимхожества, а также иокаэыбается, что:
-
\ яэыкн с муабгимножтвенным тихом ланных естесвнно иараллелиэуются, в реэультаге чего соответствуюхине обобщенные инпервалжниые бычисленхя также ирнобретоют иараллеьй внл;
-
\ ⟸улятимножества и исноляэующие нх яэыки выиолно ирименэть и лля обычныш интераль ных вычнслений (с котпых мнозецтваХ і являются интервалами).
Similar content being viewed by others
References
Banâtre, J.-P., Courant, A., and Métayer, D. Le.A parallel machine for multisel transformation and its programming style. Future Generation Computer Systems4 (1988), pp. 133–144.
Banâtre, J.-P. and Métayer, D. LeThe GAMMA model and its discripline of programming. Sci. Comput. Program15 (1990), pp. 55–77.
Banâtre, J.-P. and Métayer, D. LeProgramming by multisel transformation. Communications of the ACM36 (1) (1993), pp. 98–111.
Blelloch, G. E. and Sabot, G. W..Compiling collection-oriented langunges onto massively parallel computers. Journal of Parallel and Distributed Computing8 (2) (1990), pp. 119–134.
Cerf, V., Fernandez, E., Gostelow, K., and Volansky, S.Formal control flow properties as a model of computation. Report ENG-7178. Computer Science Department. University of California at Los Angeles, 1971.
Cooke, D. E. and Gutierrez, A.An introduction to BagL. In: “IEEE Fourth International Conference on Software Engineering and Knowledge Engineering”, Capri, Italy, 1992, pp. 479–486.
Cooke, D. E.Arithmetic over multisels leading to a high level language. In: “Proceedings of the Computers in Engineering Symposium”, Houston, TX. 1993, pp. 31–36.
Cooke, D. E..Possible effects of the next generation programming language on the software process model. International Journal of Software Engineering and Knowledge Engineering3 (3) (1993), pp. 383–399.
Cooke, D. E.A high lavel computer language based upon orderred multisels. In: “Proceedings of the IEEE Fifth International Conference on Software Engineering and Knowledge Engineering”, San Francisco, 1993, pp. 117–124.
Cooke, D. E.An executable high level language based on multisets. Submitted to IEEE Transactions of Software Engineering, to appear.
Cooke, D. E., Duran, R., Gates, A., and Kreinovich, V.Bag languages, concurrency, Horn logic programs, and linear logic. In: “Proceedings of the Sixth International Conference on Software Engineering and Knowledge Engineering SEKE’94, June 21–23 1994, Jurmala, Latvia”, IEEE Computer Society and Knowledge Systems Institute, Skokie, IL. 1994, pp. 289–297.
Dromey, G.Program derivation. The development of programs from specifications. Addison-Wesley, Sydney, 1989.
Gries, D and Schneider, F. B.A logical approach to discrele math. Springer-Verlag, N.Y., 1993.
Knuth, D.The art of computer programming. Seminumerical algorithms. Addison-Wesley, Rading, MA, 1969.
Petersen, J. L.,Computation sequence sets, Journal of Computer and System Sciences13 (1) (1976), pp. 1–24.
Peterson, J. L.,Petri net theory and the modeling of systems. Prentice-Hall, 1981.
Schwartz, J.Programming with sets; an introduction to SETL. Springer-Verlag, N.Y., 1986.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Cooke, D.E., Кук, Л.Е. An informal introduction to a high level language with applications to interval mathematics. Reliable Comput 1, 65–75 (1995). https://doi.org/10.1007/BF02390522
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02390522