[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Parallel accurate linear algebra subroutines

Параллельные высокоточные линейно-алгебраические подпрограммы

  • Published:
Reliable Computing

Abstract

In this paper we present a set of linear algebra subroutines which serve as building blocks for numerical software, and develop algorithms to implement these subroutines as a portable library for parallel computers. We consider these routines as a part of the standard arithmetic of a computer Therefore they have to deliver a validated result of high accuracy

Abstract

Представлен набор линейно-алгебраических подпрограмм, которые могут служить строительными бдоками для чисденного программного обеспечення, а также алгоритмы для реализанин зтнх подпрограмм в впде переносимой библиотеки для паралдельных комньюгеров. Зти пропедуры рассматриваются как часть стандартной арифметики компьютера, позтому они должны возврашать проверенный резвльгат высокой точности.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albrecht, R., Alefeld, G., and Stetter, H. J. (eds)Validation numerics. Computing Suppl.9 (1993).

  2. Bohlender, G. and Wolff von Gudenberg, J.Accurate matrix multiplication on the array processor AMT-DAP. In: Kaucher, E., Markov, S. M., and Mayer, G. (eds) “Computer Arithmetic, Scientific Computation and Mathematical Modelling,” IMACS Annals on Computing and Applied Mathematics12 (1992).

  3. Cordes, D. and Kaucher, E.Self-validating computation for sparse matrix problems. In: Kaucher, E., Kulisch, U., and Ullrich, C. (eds) “Computerarithmetic,” Teubner, Stuttgart, 1987.

    Google Scholar 

  4. Kulisch, U., and Miranker, W. L.The arithmetic of the digital computer: a new approach. SIAM Review28 (1) (March 1986).

  5. Philipsen, M. and Tichy, W.Compiling for massively parallel machines. In: “Proc. of Code-Generation-Concepts, Tools, Techniques”, Springer Series on Workshops in Computing, 1992.

  6. Reith, R.Wissenschaftliches Rechnen auf Multicomputern — BLAS-Routinen und die Lösung linearer Gleichungssysteme mit Fehlerkontrolle. Dissertation, Universität Basel, 1993.

  7. Rump, S. M.Validated solution of large linear systems. In: [1].Validation numerics. Computing Suppl.9 (1993).

  8. Wolff von Gudenberg, JModelling SIMD — type parallel arithmetic operations in Ada. In: Christodoulakis, D. (ed.) “Ada: The Choice for '92”, LNCS 499, Springer Berlin, 1991.

    Google Scholar 

  9. Wolff von Gudenberg, JAccurate matrix operations on hypercube computers. In: Herzberger, J. and Atanassova, L. (eds) “Computer Arithmetic and Enclosure Methods,” North-Holland, Amsterdam, 1992.

    Google Scholar 

  10. Wolff von Gudenberg, J.Implementation of accurate matrix multiplication on the CM-2. In: [1]Validation numerics. Computing Suppl.9 (1993).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Gudenberg, J.W. Parallel accurate linear algebra subroutines. Reliable Comput 1, 189–199 (1995). https://doi.org/10.1007/BF02384054

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02384054

Keywords

Navigation