[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Rapid construction of a patient-specific torso model from 3D ultrasound for non-invasive imaging of cardiac electrophysiology

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

One of the main limitations in using inverse methods for non-invasively imaging cardiac electrical activity in a clinical setting is the difficulty in readily obtaining high-quality data sets to reconstruct accurately a patient-specific geometric model of the heart and torso. This issue was addressed by investigation into the feasibility of using a pseudo-3D ultrasound system and a hand-held laser scanner to reconstruct such a model. This information was collected in under 20 min prior to a catheter ablation or pacemaker study in the electrophysiology laboratory. Using the models created from these data, different activation field maps were computed using several different inverse methods. These were independently validated by comparison of the earliest site of activation with the physical location of the pacing electrodes, as determined from orthogonal fluoroscopy images. With an estimated average geometric error of approximately 8 mm, it was also possible to reconstruct the site of initial activation to within 17.3 mm and obtain a quantitatively realistic activation sequence. The study demonstrates that it is possible rapidly to construct a geometric model that can then be used non-invasively to reconstruct an activation field map of the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barr, R. C., andSpach, M. S. (1978): ‘Inverse calculation of QRS-T epicardial potentials from body surface potential distributions for normal and ectopic beats in the intact dog’,Circ. Res.,42, pp. 661–675

    Google Scholar 

  • Bradley, C. P., Pullan, A. J., andHunter, P. J. (1997): ‘Geometric modeling of the human torso using cubic Hermite elements’,Ann. Biomed. Eng.,25, pp. 96–111

    Google Scholar 

  • Cheng, L. K., Bodley, J. M., andPullan, A. J. (2003a): ‘Comparison of potential and activation based formulations for the inverse problem of electrocardiology’,IEEE Trans. Biomed. Eng.,50, pp. 11–22

    Google Scholar 

  • Cheng, L. K., Bodley, J. M., andPullan, A. J. (2003b): ‘The effect of experimental and modeling errors on electrocardiographic inverse problems’,IEEE Trans. Biomed. Eng.,50, pp. 23–32

    Google Scholar 

  • Ghanem, R. N., Jia, C. R. P., andRudy, Y. (2003): ‘Heart-surface reconstruction and ECG electrodes localization using fluoroscopy, epipolar geometry and stereovision: Application to noninvasive imaging of cardiac electric activity’,IEEE Trans. Med. Imag.,22, pp. 1307–1318

    Google Scholar 

  • Goldberger, E. (1942): ‘A simple, indifferent, electrocardiographic electrode of zero potential and a technique of obtaining augmented, unipolar, extremity leads’,Am. Heart J.,23, pp. 483–493

    Article  Google Scholar 

  • Greensite, F., andHuiskamp, G. (1998): ‘An improved method for estimating epicardial potentials from the body surface’,IEEE Trans. Biomed. Eng.,45, pp. 98–104

    Article  Google Scholar 

  • Hansen, P. C., andO'Leary, D. P. (1993): ‘The use of the L-curve in the regularization of discrete ill-posed problems’,SIAM J. Sci. Comput.,14, pp. 1487–1503

    Article  MathSciNet  Google Scholar 

  • Huiskamp, G., andGreensite, F. (1997): ‘A new method for myocardial activation imaging’,IEEE Trans. Biomed. Eng.,44, pp. 433–446

    Article  Google Scholar 

  • Johnston, P. R., andGulrajani, R. M. (1997): ‘A new method for regularization parameter determination in the inverse problem of electrocardiography’,IEEE Trans. Biomed. Eng.,44, pp. 19–39

    Google Scholar 

  • Kass, M., Witkin, A., andTerzopoulos, D. (1987): ‘Snakes: Active contour models’,Int. J. Comput. Vision,4, pp. 321–331

    Google Scholar 

  • Legget, M. E., Leotta, D. F., Bolson, E. L., McDonald, J. A., Martin, R. W., Li, X.-N., Otto, C. M., andSheehan, F. H. (1998): ‘System for quantitative three-dimensional echocardiography of the left ventricle based on a magnetic-field position and orientation sensing system’,IEEE Trans. Biomed. Eng.,45, pp. 494–504

    Article  Google Scholar 

  • Lu, R. M. T., Steinhaus, B. M., andDawson, A. K. (1992): ‘The occurrence of anodal stimulation during bipolar pacing in implantable pacemakers’,in Werner, R. (Ed.): ‘IEEE Computers in Cardiology’ (IEEE Computer Society Press, Los Alamitos, 1992), pp. 495–498

    Google Scholar 

  • Messinger-Rapport, B. J., andRudy, Y. (1998): ‘Regularization of the inverse problem in electrocardiography: A model study’,Math. Biosci.,89, pp. 79–118

    Google Scholar 

  • Messnarz, B., Seger, M., Modre, R., Fischer, G., Hanser, F., andTilg, B. (2004): ‘A comparison of noninvasive reconstruction of epicardial versus transmembrane potentials in consideration of the space’,IEEE Trans. Biomed. Eng.,51, pp. 1609–1618

    Google Scholar 

  • Modre, R., Tilg, B., Fischer, G., andWach, P. (2002): ‘Noninvasive myocardial activation time imaging: A novel inverse algorithm applied to clinical ECG mapping data’,IEEE Trans. Biomed. Eng.,49, pp. 1153–1161

    Article  Google Scholar 

  • Nash, M. P., Bradley, C. P., Cheng, L. K., Pullan, A. J., andPaterson, D. J. (2000): ‘An experimental-computational framework for validatingin-vivo ECG inverse methods’,Int. J. Bioelectromagnetism,2

  • Onnasch, D. G. W., andPrause, G. P. M. (1992): ‘Geometric image correction and iso-center calibration at oblique biplane angiographic views’, IEEE Computers in Cardiology Conf., Durham, NC, IEEE Computer Society Press, Los Alamitos (CA), pp. 647–650

    Google Scholar 

  • Oster, H., Taccardi, B., Lux, R., Ershler, P., andRudy, Y. (1997): ‘Noninvasive electrocardiographic imaging. Reconstruction of epicardial potentials, electrograms, and isochrones and localization of single and multiple electrocardiac events’,Circulation,96, pp. 1012–1024

    Google Scholar 

  • Pesola, K., Nenonen, J., Fenici, R., Lotjonen, J., Makijarvi, M., Fenici, P., Korhonen, P., Lauerma, K., Valkonen, M., andToivonen, L. (1999): ‘Bioelectromagnetic localization of a pacing catheter in the heart’,Phys. Med. Biol.,44, pp. 2565–2578

    Article  Google Scholar 

  • Pullan, A. J., Cheng, L. K., Nash, M. P., Bradley, C. P., andPaterson, D. J. (2001): ‘Noninvasive electrical imaging of the heart: Theory and model development’,Ann. Biomed. Eng.,29, pp. 817–836

    Article  Google Scholar 

  • Ramanathan, C., Ghanem, R. N., Jia, P., Ryu, K., andRudy, Y. (2004): ‘Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia’,Nat. Med.,10, pp. 422–428

    Article  Google Scholar 

  • Schulte, R. F., Sands, G. B., Sachse, F. B., Dossel, O., andPullan, A. J. (2001): ‘Creation of a human heart model and its customisation using ultrasound images’, Biomedizinische Technik,46,

  • SippensGroenewegen, A., Spekhorst, H., van Hemel, N. M., Kingma, J. H., Hauer, R. N. W., de Bakker, J. M. T., Grimbergen, C. A., Janse, M. J., andDunning, A. J. (1993): ‘Localization of the site of origin of postinfarction ventricular tachycardia by endocardial pace mapping. Body surface mapping compared with the 12-lead electrocardiogram’,Circulation,88, pp. 2290–2306

    Google Scholar 

  • Waller, A. D. (1887): ‘A demonstration on man of electromotive changes accompanying the heart's beat’,J. Physiol.,8, pp. 229–234

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. K. Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, L.K., Sands, G.B., French, R.L. et al. Rapid construction of a patient-specific torso model from 3D ultrasound for non-invasive imaging of cardiac electrophysiology. Med. Biol. Eng. Comput. 43, 325–330 (2005). https://doi.org/10.1007/BF02345808

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345808

Keywords

Navigation