Abstract
One of the main limitations in using inverse methods for non-invasively imaging cardiac electrical activity in a clinical setting is the difficulty in readily obtaining high-quality data sets to reconstruct accurately a patient-specific geometric model of the heart and torso. This issue was addressed by investigation into the feasibility of using a pseudo-3D ultrasound system and a hand-held laser scanner to reconstruct such a model. This information was collected in under 20 min prior to a catheter ablation or pacemaker study in the electrophysiology laboratory. Using the models created from these data, different activation field maps were computed using several different inverse methods. These were independently validated by comparison of the earliest site of activation with the physical location of the pacing electrodes, as determined from orthogonal fluoroscopy images. With an estimated average geometric error of approximately 8 mm, it was also possible to reconstruct the site of initial activation to within 17.3 mm and obtain a quantitatively realistic activation sequence. The study demonstrates that it is possible rapidly to construct a geometric model that can then be used non-invasively to reconstruct an activation field map of the heart.
Similar content being viewed by others
References
Barr, R. C., andSpach, M. S. (1978): ‘Inverse calculation of QRS-T epicardial potentials from body surface potential distributions for normal and ectopic beats in the intact dog’,Circ. Res.,42, pp. 661–675
Bradley, C. P., Pullan, A. J., andHunter, P. J. (1997): ‘Geometric modeling of the human torso using cubic Hermite elements’,Ann. Biomed. Eng.,25, pp. 96–111
Cheng, L. K., Bodley, J. M., andPullan, A. J. (2003a): ‘Comparison of potential and activation based formulations for the inverse problem of electrocardiology’,IEEE Trans. Biomed. Eng.,50, pp. 11–22
Cheng, L. K., Bodley, J. M., andPullan, A. J. (2003b): ‘The effect of experimental and modeling errors on electrocardiographic inverse problems’,IEEE Trans. Biomed. Eng.,50, pp. 23–32
Ghanem, R. N., Jia, C. R. P., andRudy, Y. (2003): ‘Heart-surface reconstruction and ECG electrodes localization using fluoroscopy, epipolar geometry and stereovision: Application to noninvasive imaging of cardiac electric activity’,IEEE Trans. Med. Imag.,22, pp. 1307–1318
Goldberger, E. (1942): ‘A simple, indifferent, electrocardiographic electrode of zero potential and a technique of obtaining augmented, unipolar, extremity leads’,Am. Heart J.,23, pp. 483–493
Greensite, F., andHuiskamp, G. (1998): ‘An improved method for estimating epicardial potentials from the body surface’,IEEE Trans. Biomed. Eng.,45, pp. 98–104
Hansen, P. C., andO'Leary, D. P. (1993): ‘The use of the L-curve in the regularization of discrete ill-posed problems’,SIAM J. Sci. Comput.,14, pp. 1487–1503
Huiskamp, G., andGreensite, F. (1997): ‘A new method for myocardial activation imaging’,IEEE Trans. Biomed. Eng.,44, pp. 433–446
Johnston, P. R., andGulrajani, R. M. (1997): ‘A new method for regularization parameter determination in the inverse problem of electrocardiography’,IEEE Trans. Biomed. Eng.,44, pp. 19–39
Kass, M., Witkin, A., andTerzopoulos, D. (1987): ‘Snakes: Active contour models’,Int. J. Comput. Vision,4, pp. 321–331
Legget, M. E., Leotta, D. F., Bolson, E. L., McDonald, J. A., Martin, R. W., Li, X.-N., Otto, C. M., andSheehan, F. H. (1998): ‘System for quantitative three-dimensional echocardiography of the left ventricle based on a magnetic-field position and orientation sensing system’,IEEE Trans. Biomed. Eng.,45, pp. 494–504
Lu, R. M. T., Steinhaus, B. M., andDawson, A. K. (1992): ‘The occurrence of anodal stimulation during bipolar pacing in implantable pacemakers’,in Werner, R. (Ed.): ‘IEEE Computers in Cardiology’ (IEEE Computer Society Press, Los Alamitos, 1992), pp. 495–498
Messinger-Rapport, B. J., andRudy, Y. (1998): ‘Regularization of the inverse problem in electrocardiography: A model study’,Math. Biosci.,89, pp. 79–118
Messnarz, B., Seger, M., Modre, R., Fischer, G., Hanser, F., andTilg, B. (2004): ‘A comparison of noninvasive reconstruction of epicardial versus transmembrane potentials in consideration of the space’,IEEE Trans. Biomed. Eng.,51, pp. 1609–1618
Modre, R., Tilg, B., Fischer, G., andWach, P. (2002): ‘Noninvasive myocardial activation time imaging: A novel inverse algorithm applied to clinical ECG mapping data’,IEEE Trans. Biomed. Eng.,49, pp. 1153–1161
Nash, M. P., Bradley, C. P., Cheng, L. K., Pullan, A. J., andPaterson, D. J. (2000): ‘An experimental-computational framework for validatingin-vivo ECG inverse methods’,Int. J. Bioelectromagnetism,2
Onnasch, D. G. W., andPrause, G. P. M. (1992): ‘Geometric image correction and iso-center calibration at oblique biplane angiographic views’, IEEE Computers in Cardiology Conf., Durham, NC, IEEE Computer Society Press, Los Alamitos (CA), pp. 647–650
Oster, H., Taccardi, B., Lux, R., Ershler, P., andRudy, Y. (1997): ‘Noninvasive electrocardiographic imaging. Reconstruction of epicardial potentials, electrograms, and isochrones and localization of single and multiple electrocardiac events’,Circulation,96, pp. 1012–1024
Pesola, K., Nenonen, J., Fenici, R., Lotjonen, J., Makijarvi, M., Fenici, P., Korhonen, P., Lauerma, K., Valkonen, M., andToivonen, L. (1999): ‘Bioelectromagnetic localization of a pacing catheter in the heart’,Phys. Med. Biol.,44, pp. 2565–2578
Pullan, A. J., Cheng, L. K., Nash, M. P., Bradley, C. P., andPaterson, D. J. (2001): ‘Noninvasive electrical imaging of the heart: Theory and model development’,Ann. Biomed. Eng.,29, pp. 817–836
Ramanathan, C., Ghanem, R. N., Jia, P., Ryu, K., andRudy, Y. (2004): ‘Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia’,Nat. Med.,10, pp. 422–428
Schulte, R. F., Sands, G. B., Sachse, F. B., Dossel, O., andPullan, A. J. (2001): ‘Creation of a human heart model and its customisation using ultrasound images’, Biomedizinische Technik,46,
SippensGroenewegen, A., Spekhorst, H., van Hemel, N. M., Kingma, J. H., Hauer, R. N. W., de Bakker, J. M. T., Grimbergen, C. A., Janse, M. J., andDunning, A. J. (1993): ‘Localization of the site of origin of postinfarction ventricular tachycardia by endocardial pace mapping. Body surface mapping compared with the 12-lead electrocardiogram’,Circulation,88, pp. 2290–2306
Waller, A. D. (1887): ‘A demonstration on man of electromotive changes accompanying the heart's beat’,J. Physiol.,8, pp. 229–234
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cheng, L.K., Sands, G.B., French, R.L. et al. Rapid construction of a patient-specific torso model from 3D ultrasound for non-invasive imaging of cardiac electrophysiology. Med. Biol. Eng. Comput. 43, 325–330 (2005). https://doi.org/10.1007/BF02345808
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF02345808