Abstract
In the parallel implementation of solution methods for parabolic problems one has to find a proper balance between the parallel efficiency of a fully explicit scheme and the need for stability and accuracy which requires some degree of implicitness. As a compromise a domain splitting scheme is proposed which is locally implicit on slightly overlapping subdomains but propagates the corresponding boundary data by a simple explicit process. The analysis of this algorithm shows that it has satisfactory stability and approximation properties and can be effectively parallelized. These theoretical results are confirmed by numerical tests on a transputer system.
Zusammenfassung
Die Implementierung von Lösungs-methoden für parabolische Probleme erfordert eine ausreichende Balance zwischen der parallelen Effizienz voll-expliziter Schemata und der Notwendigkeit von Stabilität und Genauigkeit, welche einen gewissen Grad an Implizitheit bedingt. Als ein Kompromiß wird ein Gebietszerlegungsverfahren vorgeschlagen, welches lokal implizit ist auf leicht überlappenden Teilgebieten, die lokalen Randdaten aber durch einen einfachen expliziten Prozeß fortpflanzt. Die Analyse dieses Algorithmus zeigt, daß er zufriedenstellende Stabilitäts- und Approximationseigenschaften besitzt und effektiv parallelisiert werden kann. Diese theoretischen Resultate werden bestätigt durch numerische Tests auf einem Transputer-System.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Axelsson, O., Barker, V. A.: Finite element solution of boundary value problems, London: Academic Press 1984.
Bader, G., Gehrke, E.: On the performance of transputer networks for solving linear systems of equations. Parallel Comp.17, 1397–1407 (1991).
Ciarlet, Ph. G.: The finite element method for elliptic problems. Amsterdam: North Holland 1978.
Dawson, C. N., Du, Q., Dupont, T. F.: A finite difference domain decomposition algorithm for numerical solution of the heat equation. Report TR90-24, Rice Univ., Houston 1990.
Dawson, C. N., Du, Q.: A domain decomposition method for parabolic equations based on finite elements. Report TR90-25, Rice Univ., Houston 1990.
Dawson, C. N., Dupont, T. F.: Explicit/implicit, conservative, Galerkin domain decomposition procedures for parabolic problems. Report TR90-26, Rice Univ., Houston 1990.
Douglas, Jr., J., Dupont, T., Wahlbin, L.: The stability inL q of theL 2-projection into finite element function spaces. Numer. Math.23, 193–197 (1975).
Dryja, M.: Substructuring methods for parabolic problems. Technical Report 529, New York University, Department of Computer Science, November 1990.
Jäger, J., Hebeker, F. K., Kuznetsov, Y.: Investigation of overlapping in a domain decomposition method for a model heat equation. IBM WZH Technical Report, Heidelberg (in preparation).
Kuznetsov, Y. A.: Domain decomposition methods for time dependent problems. Pubbl. 1st Anal. Numer. Cons. Naz. Ric., Pavia730, 261–264 (1989).
Lisky, S.: Eine Gebietszerlegungsmethode zur parallelen Lösung parabolischer Gleichungen auf Transputersystemen. Diplomarbeit, Heidelberg 1992.
Löhner, R., Morgan, K.: Domain decomposition for the simulation of transient problems in CFD. In: R., Glowinski, et al. (eds.) Proc. First Symp. on Domain Decomposition Methods for Part. Diff. Equ. pp. 426–431, SIAM, Philadelphia 1988.
Rannacher, R.: Finite element solution of diffusion problems with irregular data. Numer. Math.43, 309–327 (1984).
Thomée, V.: Galerkin finite element methods for parabolic problems. Berlin, New York: Springer 1984 (Lecture Notes in Mathematics 1054).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Blum, H., Lisky, S. & Rannacher, R. A domain splitting algorithm for parabolic problems. Computing 49, 11–23 (1992). https://doi.org/10.1007/BF02238647
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02238647