Abstract
We are given a set ofn d-dimensional (possibly intersecting) isothetic hyperrectangles. The topic of this paper is the separation of these rectangles by means of a cutting isothetic hyperplane. Thereby we assume that a rectangle which is intersected by the cutting plane iscut into two non-overlapping hyperrectangles. We investigate the behavior of several kinds of balancing functions, as well as their linear combination and present optimal and practical algorithms for computing the corresponding balanced cuts. In addition, we give tight worst-case bounds for the quality of the balanced cuts.
Zusammenfassung
Gegeben sei eine Menge vonn (ggf. überlappenden) isothetischen Hyperrechtecken imd-dimensionalen Raum. Diese Arbeit beschäftigt sich mit Zerlegungen dieser Hyperrechteckmenge durch Schnitthyperebenen, wobei wir annehmen, daß jedes von einer Hyperebene geschnittene Hyperrechteck in zwei nicht-überlappende Hyperrechtecke zerschnitten wird. Wir untersuchen das Verhalten einiger Balancierungskriterien für Schnitte und präsentieren optimale and praktikable Algorithmen zur Berechnung der entsprechenden balancierten Schnitte. Schließlich geben wir auch scharfe Worst-case-Schranken für die bestmöglich erreichbare Qualität der balancierten Schnitte an.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
d'Amore, F., Franciosa, P. G.: Separating sets of hyperrectangles. Int. J. Comp. Geometry Appl.3, 155–165, 345 (1993).
d'Amore, F., Franciosa, P. G.: On the optimal binary plane partition for sets of isothetic rectangles. IPL44, 255–259 (1992).
d'Amore, F., Roos, T., Widmayer, P.: An optimal algorithm for computing a best cut of a set of hyperrectangles. In: Graphics, design and visualization. IFIP Transactions B-9 (Pattanaik, S. N., Mudur, S. P., eds.), pp. 215–224. Amsterdam: Elsevier 1993.
Ben-Or, M.: Lower bounds for algebraic computation trees. Proc. 15th ACM STOC, pp. 80–86 (1983).
Bentley, J. L.: Multidimensional binary search trees used for associative searching. Comm. ACM,18, 509–517 (1975).
de Berg, M., de Groot, M., Overmars, M.: Perfect binary space partitions. Proc. 5th Canad. Conf. Comput. Geom., Waterloo, Ontario, pp. 109–114 (1993).
de Berg, M., de Groot, M., Overmars, M.: New results on binary space partitions in the plane. Proc. SWAT'94. Lecture Notes in Computer Science Vol.824, 61–72 (1994).
de Berg, M., de Groot, M.: Binary space partitions for sets of cubes, Abstracts 10th European Workshop Comput. Geom. (CG'94), pp. 84–88 (1994).
Fredman, M. L., Weide, B.: On the complexity of computing the measure of U[ai, bj]. Comm. ACM21, 540–544 (1978).
Fuchs, H., Kedem, Z., Naylor, B.: On visible surface generation by a priori tree structures, Comput. Graphics.14, 124–133 (1980).
Guttman, A.: R-trees.: a dynamic index structure for spatial searching Proc. ACM SIGMOD, pp. 47–57 (1984).
Amatodes, J. A., Naylor, B., Thibault, W.: Merging BSP trees yields polyhedral set operations. Comp. Graphics24, 115–124 (1990).
Nievergelt, J., Hinterberger, H., Sevcik, K. C.: The grid file: An adaptable, symmetric multikey file structure. ACM Trans. Database Syst.9, 38–71 (1984).
Nguyen, V. H., Ross, T., Widmayer, P.: Balanced cuts of a set of hyperrectangles. Proc. 5th Canad. Conf. Comput. Geom., Waterloo, Ontario, pp. 121–126 (1993).
Paterson, M. S., Yao, F. F.: Efficient binary space partitions for hidden-surface removal and solid modeling. Discrete Comput. Geom.5, 485–503 (1990).
Paterson, M. S., Yao, F. F.: Optimal binary space partitions for orthogonal objects. J. Algorithms13, 99–113 (1992).
Samet, H.: The design and analysis of spatial data structures. Reading: Addison-Wesley 1990.
Thibault, W. C., Naylor, B. F.: Set operations on polyhedra using binary space partitioning trees. Proc. SIGGRAPH'87, pp. 153–162 (1987).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
d'Amore, F., Nguyen, V.H., Roos, T. et al. On optimal cuts of hyperrectangles. Computing 55, 191–206 (1995). https://doi.org/10.1007/BF02238431
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02238431