Summary
An algorithm for computingChebyshev solution ofn+1 inconsistent linear equations inn unknowns is given. It makes use of orthogonal triangularization followed by the backsubstitution part of theGaussian elimination.
Zusammenfassung
Es wird ein Algorithmus zur Berechnung derTschebyscheff-Lösung vonn+1 linearen Gleichungen inn Unbekannten angegeben. Die Lösung wird gewonnen durch eine orthogonale Triangularization gefolgt durch den Teil der Rücksubstitution derGaussschen Elimination.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Cheney, E. W.: Introduction to Approximation Theory. p. 28–56. New York: McGraw-Hill Book Co. 1966.
Householder, A. S.: The Theory of Matrices in Numerical Analysis. p. 133–134. New York: Blaisdell Publishing Co. 1964.
Penrose, R.: A generalized inverse for matrices. Proc. Camb. Phil. Soc.,51, 406–413 (1955).
Penrose, R.: On best approximate solutions of linear matrix equations. Proc. Camb. Phil. Soc.,52, 17–19 (1956).
Tewarson, R. P.: On the orthonormalization of sparse vectors. Comp.3, 268–279 (1968).
Tewarson, R. P.: On computing generalized inverses. Comp.4, 139–152 (1969).
Wilkinson, J. H.: Error analysis of direct methods of matrix inversion. J. ACM.,8, 281–330 (1961).
Wilkinson, J. H.: The Algebraic Eigenvalue Problem. pp. 152–153, 233–236. London: Oxford University Press. 1965.
Tewarson, R. P.: Minimax Solution ofn+1 Inconsistent Linear Equations inn Unknowns, Report No. 121, College of Engineering, State Univ. of N. Y. at Stony Brook, Sept. 16, 1968.
Meicler, M.:Chebyshev Solution of an Inconsistent System ofn+1 Linear Equations inn Unknowns in Terms of its Least Squares Solutions. SIAM Rev.,10, 373–375 (1968).
Author information
Authors and Affiliations
Additional information
This work was supported by the National Aeronautics and Space Administration, Washington, D. C., Grant No. NGR-33-015-013.
Rights and permissions
About this article
Cite this article
Tewarson, R.P. Minimax solution of n+1 inconsistent linear equations in n unknowns. Computing 5, 371–376 (1970). https://doi.org/10.1007/BF02252331
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02252331