[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On the RAS-algorithm

Zum RAS-Algorithmus

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Given a nonnegative real (m, n) matrixA and positive vectorsu, v, then the biproportional constrained matrix problem is to find a nonnegative (m, n) matrixB such thatB=diag (x) A diag (y) holds for some vectorsx ∈ ℝm andy ∈ ℝn and the row (column) sums ofB equalu i (v j )i=1,...,m(j=1,..., n). A solution procedure (called the RAS-method) was proposed by Bacharach [1] to solve this problem. The main disadvantage of this algorithm is, that round-off errors slow down the convergence. Here we present a modified RAS-method which together with several other improvements overcomes this disadvantage.

Zusammenfassung

SeiA eine reelle (m, n) Matrix undu, v positive Vektoren. Das nichtnegative Matrixproblem besteht nun in der Aufgabe, eine nichtnegative (m, n) Matrix zu bestimmen, so daßB=diag(x) A diag (y) für Vektorenx ∈ ℝm undy ∈ ℝn gilt undu i (v j )i=1, ...,m (j=1,...,n) die Zeilen- und Spaltensummen vonB darstellen. Eine Lösungsmethode (RAS-Verfahren) wurde von Bacharach [1] vorgeschlagen. Ein wesentlicher Nachteil dieses Algorithmus ist die Verlangsamung der Konvergenzgeschwindigkeit durch Rundungsfehler. Hier schlagen wir einen modifizierten RAS-Algorithmus vor, der zusammen mit anderen Verbesserungen diesen Nachteil überwindet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bacharach, M.: Biproportional matrices and input-output change. Cambridge: Cambridge University Press 1970.

    Google Scholar 

  2. Bachem, A., Korte, B.: Estimating input-output matrices. Report No. 7784-OR, Institut für Ökonometrie und Operations Research, Universität Bonn, 1977.

  3. Bachem, A., Korte, B.: Minimum norm problems over transportation problems. Report 79130-OR, Institut für Ökonometrie und Operations Research, Universität Bonn, 1979.

  4. Bingen, F.: Simplification de la démonstration d'un théoréme de M. W. M. Gorman. Note, Université Libre de Bruxelles, Bruxelles, 1965.

    Google Scholar 

  5. Deming, W. E., Stephan, F. F.: On a least-squares adjustment of a sampled frequency table when the expected marginal totals are known. Annals of Mathematical Statistics11, 427–444 (1940).

    Google Scholar 

  6. Fréchet, M.: Sur les tableaux dont les marges et des bornes sont données. Review of the International Statistical Institute28, 10–32 (1960).

    Google Scholar 

  7. Friedlander, D.: A technique for estimating a contigency table, given the marginal total and some supplementary data. Journal of the Royal Statistical SocietyA 124, 412–420 (1961).

    Google Scholar 

  8. Gorman, W. M.: Estimating trends in Leontief matrices, a note on Mr. Bacharach's paper. Note, Nuffield College, Oxford, 1963.

    Google Scholar 

  9. Stone, R.: Input-output and national accounts. Organisation for Economic Co-Operation and Development (OECD), Paris, 1961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Sonderforschungsbereich 21 (DFG), Institut für Ökonometrie und Operations Research, Universität Bonn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachem, A., Korte, B. On the RAS-algorithm. Computing 23, 189–198 (1979). https://doi.org/10.1007/BF02252097

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02252097

Keywords

Navigation