[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On a generalisation of the root iterations for polynomial complex zeros in circular interval arithmetic

Über eine Verallgemeinerung der Wurzeliterationen für komplexe Polynomnullstellen in Kreis-Intervallarithmetik

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Consider a polynomialP (z) of degreen whose zeros are known to lie inn closed disjoint discs, each disc containing one and only one zero. Starting from the known simultaneous interval processes of the third and fourth order, based on Laguerre iterations, two generalised iterative methods in terms of circular regions are derived in this paper. These interval methods make use of the definition of thek-th root of a disc. The order of convergence of the proposed interval methods isk+2 (k≧1). Both procedures are suitable for simultaneous determination of interval approximations containing real or complex zeros of the considered polynomialP. A criterion for the choice of the appropriatek-th root set is also given. For one of the suggested methods a procedure for accelerating the convergence is proposed. Starting from the expression for interval center, the generalised iterative method of the (k+2)-th order in standard arithmetic is derived.

Zusammenfassung

Betrachten wir ein Polynomn-ten Grades, für welches bekannt ist, daß die Nullstellen inn geschlossenen disjunkten Kreisscheiben liegen, wobei jedes Kreisgebiet eine und nur eine Nullstelle enthält. Ausgehend von den bekannten simultanen Intervallverfahren dritter und vierter Ordnung, basierend auf den Laguerreschen Iterationen, werden zwei verallgemeinte Iterationsverfahren für Kreisscheiben formuliert. Diese Intervallmethoden benützen die Definition derk-ten Wurzel einer Kreisscheibe. Die Konvergenzordnung der vorgeschlagenen Intervallverfahren istk+2 (k≧1). Beide Verfahren sind günstig für die simultane Bestimmung von Intervallapproximationen, die die reellen oder komplexen Nullstellen des gegebenen Polynoms enthalten. Ein Kriterium für die Wahl der richtigenk-Wurzelmenge wird angegeben. Für eine der vorgeschlagenen Methoden wird ein Verfahren zur Beschleunigung der Konvergenz angegeben. Ausgehend von Ausdruck für Intervallzentrum ist ein verallgemeintes Iterationsverfahren der Ordnungk+2 für Klassische Arithmetik formuliert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Dochev, K., Byrnev, P.: Certain modifications of Newton's method for the approximate solution of algebraic equations. Ž. Vyčisl. Mat. i Fiz.4, 915–920 (1964).

    Google Scholar 

  2. Ehrlich, L. W.: A modified Newton method for polynomials. Comm. ACM10, 107–108 (1967).

    Article  Google Scholar 

  3. Gargantini, I., Henrici, P.: Circular arithmetic and the determination, of polynomials zeros. Numer. Math.18, 305–320 (1972).

    Article  Google Scholar 

  4. Gargantini, I.: Parallel algorithms for the determination of polynomial zeros. Proc. 3rd. Manitoba Conf. Numer. Math., Winnipeg, 195–211 (1973).

  5. Gargantini, I.: Parallel square root iterations. In: Interval Mathematics (Nickel, K., ed.), pp. 196–204. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  6. Gargantini, I.: Parallel Laguerre iterations: Complex case. Numer. Math.26, 317–323 (1976).

    Article  Google Scholar 

  7. Gargantini, I.: Further applications of circular arithmetic: Schroeder-like algorithms with error bounds for finding zeros of polynomials. SIAM J. Numer. Anal.3, 497–510 (1978).

    Article  Google Scholar 

  8. Glatz, G.: Newton-Algorithmen zur Bestimmung von Polynomwurzeln unter Verwendung Komplexer Kreisarithmetik. In: Interval Mathematics (Nickel, K., ed.), pp. 205–214. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  9. Moore, R. E.: Methods and applications of, interval analysis. SIAM Studies in Applied Mathematics, Philadelphia, 1979.

  10. Ostrowski, A. M.: Solution of equations in Euclidean and Banach spaces. New York: Academic Press 1973.

    Google Scholar 

  11. Peluso, R. I.: Una famiglia di metodi iterativi per ogni ordine superiore al seconde Calcolo10, 145–149 (1973).

    Google Scholar 

  12. Petković, M., Petković Lj.: On a representation of thek-th root in complex circular interval arithmetic. International Symposium on Interval Mathematics, Freiburg 1980. In: Academic Press Proc. (Nickel, K., ed.), pp. 473–479.

  13. Petković, M.: On the generalisation of some algorithms for the simultaneous approximation of polynomial roots.Ibid., International Symposium on Interval Mathematics, Freiburg 1980. In: Academic Press Proc. (Nickel, K., ed.), pp 461–471.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petković, M.S. On a generalisation of the root iterations for polynomial complex zeros in circular interval arithmetic. Computing 27, 37–55 (1981). https://doi.org/10.1007/BF02243437

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02243437

Keywords

Navigation