[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A simple algorithm for generating random variates with a log-concave density

Ein einfacher Algorithmus zur Erzeugung zufälliger Veränderlicher mit log-konkaver Dichte

  • Contrinbuted Papers
  • Published:
Computing Aims and scope Submit manuscript

Abstract

We present a short algorithm for generating random variates with log-concave densityf onR and known mode in average number of operations independent off. Included in this class are the normal, gamma, Weibull, beta and exponential power (all with shape parameters at least 1), logistic, hyperbolic secant and extreme value distributions. The algorithm merely requires the presence of a uniform [0, 1] random number generator and a subprogram for computingf. It can be implemented in about 10 lines of FORTRAN code.

Zusammenfassung

Wir legen einen kurzen Algorithmus zur Erzeugung von Zufallsveränderlichen mit log-konkaver Dichtef aufR mit bekanntem Median-Wert vor. Die mittlere Anzahl der erforderlichen Operationen ist unabhängig vonf. Die log-konkaven Dichtefunktionen beschreiben u. a. die Normal-, Gamma-, Weibull-, Beta-, Potenzexponential- (alle mit Formparameter mindestens 1), Perks- und Extremwert-Verteilung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abramowitz, M., Stegun, I. A.: Handbook of Mathematical Tables. New York: Dover Publications 1970.

    Google Scholar 

  2. Ahrens, J. H., Dieter, U.: Computer methods for sampling from gamma, beta, Poisson and binomial distributions. Computing12, 223–246 (1974).

    Google Scholar 

  3. Best, J. D.: Letter to the editor. Applied Statistics27, 181 (1978).

    Google Scholar 

  4. Cheng, R. C. H.: The generation of gamma variables with non-integral shape parameter. Annals of Statistics26, 71–75 (1977).

    Google Scholar 

  5. Davidovic, Ju. S., Korenbljum, B. I., Hacet, B. I.: A property of logarithmically concave functions. Dokl. Akad. Nauk SSR185, 477–480 (1969).

    Google Scholar 

  6. Devroye, L.: On the computer generation of random variates with monotone or unimodal densities. Computing32, 43–68 (1984).

    Google Scholar 

  7. Gumbel, E. J.: Statistics of Extremes. New York: Columbia University Press 1958.

    Google Scholar 

  8. Ibragimov, I. A.: On the composition of unimodal distributions. Theory of Probability and Its Applications1, 255–260 (1956).

    Google Scholar 

  9. Jorgensen, B.: Statistical Properties of the Generalized Inverse Gaussian Distribution (Lecture Notes in Statistics, Vol. 9). Berlin-Heidelberg-New York: Springer 1982.

    Google Scholar 

  10. Lekkerkerker, C. G.: A property of log-concave functions I, II. Indagationes Mathematicae15, 505–521 (1953).

    Google Scholar 

  11. Perks, W. F.: On some experiments in the graduation of mortality statistics. Journal of the Institute of Actuaries58, 12–57 (1932).

    Google Scholar 

  12. Prekopa, A.: On logarithmic concave measures and functions. Acta Scientiarium Mathematicarum Hungarica34, 335–343 (1973).

    Google Scholar 

  13. Tadikamalla, P. R., Johnson, M. E.: A complete guide to gamma variate generation. American Journal of Mathematical and Management Sciences1, 213–236 (1981).

    Google Scholar 

  14. Talacko, J.: Perks' distributions and their role in the theory of Wiener's stochastic variables. Trabajos de Estadistica7, 159–174 (1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devroye, L. A simple algorithm for generating random variates with a log-concave density. Computing 33, 247–257 (1984). https://doi.org/10.1007/BF02242271

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02242271

Key words and phrases

Navigation