Summary
On the basis of the monotone discretization technique, we propose in this paper a new feedback grid generation principle for weakly nonlinear 2-point boundary value problems. By means of available estimations resulting from lower and upper solutions the grid can be refined automatically. The monotonicity of the method is guaranteed by principles of monotone iterations. The convergence properties of the proposed algorithm are analyzed.
Zusammenfassung
In der vorliegenden Arbeit wird ein Gittersteuerungsprinzip auf der Basis von monotonen Diskretisierungs-Iterations-Verfahren und der damit erzeugten Lösungseinschließungen bei schwach nichtlinearen 2-Punkt-Randwertaufgaben vorgeschlagen. Mittels verfügbarer Schranken wird das Gitter automatisch erzeugt. Die Monotonie des Verfahrens ist dabei durch Prinzipien der monotonen Iteration gesichert. Es werden die Konvergenzeigenschaften des vorgeschlagenen Verfahrens analysiert.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abhari, H., Al-Zanaidi, M., Grossmann, C.: Computational aspects of montone iteration discretization algorithm. Preprint 07-01-88, TU Dresden.
Adams, E.: Invers-Monotonie, direkte und indirekte Intervallmethoden. Bericht Nr. 185, Forschungszentrum Graz, 1982.
Adams, E., Ansorge, R.; Grossmann, C.; Ross, H.-G. (eds.): Discretization in differential equations and enclosures Akademie Verlag, Berlin, 1987.
Alefeld, G., Herzberger, J.: Einfuehrung in die Intervallrechnung. Teubner Verlag, Stuttgart, 1974.
Al-Zanaidi, M., Grossmann, C.: Monotone iteration discretization algorithm for BVP's. Computing41 (1989), 59–74.
Al-Zanaidi, M., Grossmann, C., Monotone discretization in boundary value problems using PASCAL-SC. (Proceedings of ISNA-87, Prague).
Bakuška, I., Vogelius, M.: Feedback and adaptive finite element solution of one-dimensional boundary value problems. Numer. Math.44 (1984), 75–102.
Bietermann, M., Babuška, I.: An adaptive method of lines with error control for parabolic equations of reaction diffusion type. J. Comp. Phys.63 (1986), 33–66.
Doolan, E. P., Miller, J. J. H., Schilders, W. M. A.: Uniform numerical methods for problems with initial and boundary layers. Boole Press, Dublin, 1980.
Esser, H., Niederdrenk: Nichtaequidistante Diskretisierung von RWA. Numer. Math.35 (1980), 465–478.
Gilbarg, D., Trudinger, N. S.: Elliptic partial differential equations of second order. Heidelberg: Springer, 1977.
Grossmann, C.: Monotone discretization of two-point boundary value problems and related numerical methods. In: [3] Adams, E., Ansorge, R.; Grossmann, C.; Ross, H.-G. (eds.): Discretization in differential equations and enclosures. Akademie Verlag, Berlin, 1987 99–122.
Grossmann, C., Ross, H.-G.: Feedback grid generation via monotone discretization for two-point boundary value problems. IMA J. Numer. Anal.6 (1986), 421–432.
Goering, H., Felgenhauer, A., Lube, G., Roos, H.-G., Tobiska, L.: Singularly perturbed differential equations. Berlin: Akademie Verlag, 1983.
Lippold, G.: Adaptive approximation. ZAMM67 (1987), 453–465.
Nickel, K.: The construction of a priori bounds for the solution of a two-point boundary value problem with finite elements I. Computing23 (1979), 247–265.
PASCAL-SC. Information manual, version IBM-PC/DOS. Universitaet Karlsruhe, 1986.
Rheinboldt, W. C.: On a theory of mesh-refinement processes. SIAM J. Numer. Anal.17 (1980), 766–778.
Sattinger, D. H.: Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J.31 (1972), 979–1000.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Al-Zanaidi, M., Grossmann, C. 1D-grid generation by monotone iteration discretization. Computing 43, 377–390 (1990). https://doi.org/10.1007/BF02241656
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02241656