[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

1D-grid generation by monotone iteration discretization

Eindimensionale Gittergenerierung durch monotone Diskretisierungs-Iteration

  • Published:
Computing Aims and scope Submit manuscript

Summary

On the basis of the monotone discretization technique, we propose in this paper a new feedback grid generation principle for weakly nonlinear 2-point boundary value problems. By means of available estimations resulting from lower and upper solutions the grid can be refined automatically. The monotonicity of the method is guaranteed by principles of monotone iterations. The convergence properties of the proposed algorithm are analyzed.

Zusammenfassung

In der vorliegenden Arbeit wird ein Gittersteuerungsprinzip auf der Basis von monotonen Diskretisierungs-Iterations-Verfahren und der damit erzeugten Lösungseinschließungen bei schwach nichtlinearen 2-Punkt-Randwertaufgaben vorgeschlagen. Mittels verfügbarer Schranken wird das Gitter automatisch erzeugt. Die Monotonie des Verfahrens ist dabei durch Prinzipien der monotonen Iteration gesichert. Es werden die Konvergenzeigenschaften des vorgeschlagenen Verfahrens analysiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abhari, H., Al-Zanaidi, M., Grossmann, C.: Computational aspects of montone iteration discretization algorithm. Preprint 07-01-88, TU Dresden.

  2. Adams, E.: Invers-Monotonie, direkte und indirekte Intervallmethoden. Bericht Nr. 185, Forschungszentrum Graz, 1982.

  3. Adams, E., Ansorge, R.; Grossmann, C.; Ross, H.-G. (eds.): Discretization in differential equations and enclosures Akademie Verlag, Berlin, 1987.

    Google Scholar 

  4. Alefeld, G., Herzberger, J.: Einfuehrung in die Intervallrechnung. Teubner Verlag, Stuttgart, 1974.

    Google Scholar 

  5. Al-Zanaidi, M., Grossmann, C.: Monotone iteration discretization algorithm for BVP's. Computing41 (1989), 59–74.

    Google Scholar 

  6. Al-Zanaidi, M., Grossmann, C., Monotone discretization in boundary value problems using PASCAL-SC. (Proceedings of ISNA-87, Prague).

  7. Bakuška, I., Vogelius, M.: Feedback and adaptive finite element solution of one-dimensional boundary value problems. Numer. Math.44 (1984), 75–102.

    Google Scholar 

  8. Bietermann, M., Babuška, I.: An adaptive method of lines with error control for parabolic equations of reaction diffusion type. J. Comp. Phys.63 (1986), 33–66.

    Google Scholar 

  9. Doolan, E. P., Miller, J. J. H., Schilders, W. M. A.: Uniform numerical methods for problems with initial and boundary layers. Boole Press, Dublin, 1980.

    Google Scholar 

  10. Esser, H., Niederdrenk: Nichtaequidistante Diskretisierung von RWA. Numer. Math.35 (1980), 465–478.

    Google Scholar 

  11. Gilbarg, D., Trudinger, N. S.: Elliptic partial differential equations of second order. Heidelberg: Springer, 1977.

    Google Scholar 

  12. Grossmann, C.: Monotone discretization of two-point boundary value problems and related numerical methods. In: [3] Adams, E., Ansorge, R.; Grossmann, C.; Ross, H.-G. (eds.): Discretization in differential equations and enclosures. Akademie Verlag, Berlin, 1987 99–122.

    Google Scholar 

  13. Grossmann, C., Ross, H.-G.: Feedback grid generation via monotone discretization for two-point boundary value problems. IMA J. Numer. Anal.6 (1986), 421–432.

    Google Scholar 

  14. Goering, H., Felgenhauer, A., Lube, G., Roos, H.-G., Tobiska, L.: Singularly perturbed differential equations. Berlin: Akademie Verlag, 1983.

    Google Scholar 

  15. Lippold, G.: Adaptive approximation. ZAMM67 (1987), 453–465.

    Google Scholar 

  16. Nickel, K.: The construction of a priori bounds for the solution of a two-point boundary value problem with finite elements I. Computing23 (1979), 247–265.

    Google Scholar 

  17. PASCAL-SC. Information manual, version IBM-PC/DOS. Universitaet Karlsruhe, 1986.

  18. Rheinboldt, W. C.: On a theory of mesh-refinement processes. SIAM J. Numer. Anal.17 (1980), 766–778.

    Google Scholar 

  19. Sattinger, D. H.: Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J.31 (1972), 979–1000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Zanaidi, M., Grossmann, C. 1D-grid generation by monotone iteration discretization. Computing 43, 377–390 (1990). https://doi.org/10.1007/BF02241656

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02241656

AMS Subject Classifications

Key words

Navigation