[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A unary representation result for systemT

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

After an introduction to the syntax of Gödel systemT, we present its naive denotational semantics in the domain of lazy natural numbers and show an adequacy property relating syntax and semantics. We recall the natural restrictions of systemT delineating primitive recursion as a subsystem. We discuss the weakness of primitive recursion by exhibiting a simple unary algorithm whose denotation is not the semantics of a primitive recursive algorithm. This algorithm can nevertheless be programmed in systemT by using the power of higher-order (functional) definitions. Generalizing this example, we obtain a representation theorem, asserting that every “reasonable” algorithm of typeNN can be programmed in systemT. We conclude by discussing what is known in the case of higher arities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. W. Ackermann, Zum Hilbertschen Aufbau der reellen Zahlen, Math. Ann. 99(1928)1–36, English translation in: J. van Heijenoort,From Frege to Gödel (Harvard University Press, 1981) pp. 493–507.

    Google Scholar 

  2. A. Church,The Calculi of Lambda-Conversion (Princeton University Press, Princeton, NJ, 1941).

    Google Scholar 

  3. L. Colson, About primitive recursive algorithms,Proc. 16th Int. Colloq. on Automata, Languages and Programming, eds. G. Ausiello, M. Dezani-Ciancaglini and S. Ronchi Della Rocca, LNCS 372 (Springer, 1989) 194–206. Journal version in TCS 83(1991)57–69.

    Google Scholar 

  4. L. Colson, On list prinitive recursion and the complexity of computinginf, BIT 32(1992)5–9.

    Google Scholar 

  5. L. Colson, Représentation intentionnelle d'algorithmes dans les systèmes fonctionnels: une étude de cas, Ph.D. Thesis, Université Paris 7 (1991).

  6. T. Coquand, Une preuve directe du théorème d'ultime obstination, Compt. Rend. de l'Acad. des Sci. Paris I 314(1992)489–492.

    Google Scholar 

  7. S. Fortune, D. Leivant and M. O'Donnell, The expressiveness of simple and second-order type structures, J. ACM 30(1)(1983).

  8. J.Y. Girard,Proof Theory and Logical Complexity, Vol. 1. Studies in Proof Theory (Bibliopolis, Napoli, 1988).

    Google Scholar 

  9. J.Y. Girard, Y. Lafont and P. Taylor, Proofs and types,Cambridge Tracts in Theor. Comp. Sci. 7 (Cambridge University Press, 1989).

  10. K. Gödel, Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes, Dialectica 12 (1958)280–287, English translation: On a hitherto unexploited extension of the finitary standpoint, J. Philos. Logic 9 (1980).

    Google Scholar 

  11. S.C. Kleene,Introduction to Metamathematics (North-Holland, 1952).

  12. J.L. Krivine, Un algorithme non typable dans le systèmeF, Compt. Rend. de l'Acad. des Sci. Paris I 304(5)(1987).

  13. P. Martin-Löf, Constructive mathematics and computer programming, in:Logic, Methodology and Philosophy of Science 6 (North-Holland, 1980) pp. 153–175.

    Google Scholar 

  14. P. Martin-Löf, Intuitionistic type theory,Studies in Proof Theory (Bibliopolis, Napoli, 1984).

    Google Scholar 

  15. G. Plotkin, LCF considered as a programming language, Theor. Comp. Sci. 5(1977)223–255.

    Google Scholar 

  16. W.W. Tait, Intensional interpretation of functionals of finite type I, JSL 32(1967)198–212.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colson, L. A unary representation result for systemT . Ann Math Artif Intell 16, 385–403 (1996). https://doi.org/10.1007/BF02127804

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02127804

Keywords

Navigation