[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Convex set functions ind-space

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

References

  1. T. W. Anderson, The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities,Proc. Amer. Math. Soc. 6 (1955), 170–176.

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Borell, Inverse inequalities for concave or generalized concave functions, Uppsala Univ. Dept. of Math., Report No. 44 (1972).

  3. C. Borell, Complements of Lyapunov's inequality,Math. Ann. 205 (1973), 323–331.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Das Gupta, M. L. Eaton, I. Olkin, M. Perlman, L. J. Savage andM. Sobel, Inequalities on the probability content of convex regions for elliptically contoured distributions,Proc. Sixth Berkeley Sympos. Math. Statist. Probability, Vol. II, Berkeley, 1972, 241–265.

    MATH  Google Scholar 

  5. A. Dinghas, Über eine Klasse superadditiver Mengenfunktionale von Brunn-Minkowski-Lusternikschem typus,Math. Z. 68 (1957/58), 111–125.

    Article  MathSciNet  Google Scholar 

  6. H. Hadwiger andD. Ohman, Brunn-Minkowskischer Satz und Isoperimetrie,Math. Z. 66 (1956/57), 1–8.

    Article  MathSciNet  Google Scholar 

  7. N. L. Johnson andS. Kotz,Distributions in Statistics: Continuous Multivariate Distributions, Wiley, New York, 1972.

    MATH  Google Scholar 

  8. L. Leindler, On a certain converse of Hölder's inequality II,Acta Sci. Math. (Szeged) 33 (1972), 215–223.

    MATH  Google Scholar 

  9. P. Montel, Sur les fonctions convexes et les fonctions sousharmoniques,J. Math. Pures Appl. 7 (1928), 29–60.

    MATH  Google Scholar 

  10. A. Prékopa, Logarithmic concave measures with application to stochastic programming,Acta Sci. Math. (Szeged) 32 (1971), 301–316.

    MathSciNet  MATH  Google Scholar 

  11. C. A. Rogers andG. C. Shephard, The difference body of a convex body,Arch. Math. (Basel) 8 (1957), 220–233.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. A. Rosenbaum, Sub-additive functions,Duke Math. J. 17 (1950), 225–247.

    Article  MathSciNet  Google Scholar 

  13. W. Rudin,Real and Complex Analysis, McGraw-Hill, New York, 1966.

    MATH  Google Scholar 

  14. I. J. Schoenberg, On Pólya frequency functions I. The totally positive functions and their Laplace transforms,J. Analyse Math. 1 (1951), 331–374.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Sherman, A theorem on convex sets with applications,Ann. Math. Statist. 26 (1955), 763–767.

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Sierpiński, Sur la question de la mesurabilité de la base de M. Hamel,Fund. Math. 1 (1920), 105–111.

    MATH  Google Scholar 

  17. S. Vajda,Probabilistic programming, Academic Press, New York, 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borell, C. Convex set functions ind-space. Period Math Hung 6, 111–136 (1975). https://doi.org/10.1007/BF02018814

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02018814

Keywords

Navigation