[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Iterative solution of large systems of normal equations arising from the fitting of surfaces to irregularely spaced data

  • Published:
Zeitschrift für Operations Research Aims and scope Submit manuscript

Summary

The Gauss-Seidel iteration process is specialised to fit unique surfaces in the least square sense to irregularely spaced data. The Fortran IV version of the specialised algorithm, called iterative one parameter least square process, is described for immediate computer use. The new algorithm requires so few storage locations that a 32 K computer memory without any peripheric device is sufficient to store 3000 data points and to solve a system of normal equations of order up to 1500. The surface fitting is illustrated by a numerical example.

Zusammenfassung

Das Gauss-Seidel Iterationsverfahren wird derart spezialisiert, daß eine eindeutige Fläche im Sinne der kleinsten Quadrate an unregelmäßig angeordnete Daten angepasst wird. Das Fortran IV Programm des spezialisierten Algorithmus, welchen wir als „Verfahren der kleinsten Quadrate mit einem Parameter“ bezeichnen, wird für unmittelbaren Gebrauch beschrieben. Der neue Algorithmus benötigt so wenig Speicher, daß ein Computer mit 32 K ohne periphere Einrichtungen genügt, um 3000 Werte (x-, y-, z-koordinaten) aufzunehmen und ein System von bis zu 1500 Normalgleichungen zu läsen. Die Flächenanpassung wird an einem Beispiel veranschaulicht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Briggs, I.C.: Machine Contouring Using Minimum Curvature. Geophysics,39 (1), 1974 39–48.

    Article  Google Scholar 

  • Brownlee, K.A.: Statistical Theory and Methodology In Science and Engineering. 2nd ed., New York 1966.

  • Czeglédy, P.F.: Quelques Possibilités des Méthodes Objectives pour l'Etablissement des Cartes en Geophysique. Thèse No. 1517, Université de Genève, 1970.

  • —: Efficiency of Local Polynomials in Contour Mapping. J. Mathematical Geology,4 (4), 1972, 291–305.

    Google Scholar 

  • Davaud, E.: Le Tracage automatique de Cartes d'Isovaleurs: Un algorithme Simple en Fortran IV. Canadian J. of Earth Sciences,12 (6), 1975, 1069–1077.

    Google Scholar 

  • Davis, J.C.: Statistics and Data Analysis in Geology. New York 1973.

  • Hessing, R. C., H.K. Lee, andE.N. Powers: Automatic Contouring using bicubic Functions. Geophysics,37, (4), 1972, 669–674.

    Article  Google Scholar 

  • Plackett, R.L.: Principles of Regression Analysis. Oxford at the Clarendon Press, 1960.

    Google Scholar 

  • Smith, F.G.: Three Computer Programs for Contouring Map Data. Canadian Journal of Earth Science,5, 1968, 324–327.

    Google Scholar 

  • West lake, J.R.: A Handbook of Numerical Matrix Inversion and Solution of Linear Equations. New York 1968.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czeglédy, P.F. Iterative solution of large systems of normal equations arising from the fitting of surfaces to irregularely spaced data. Zeitschrift für Operations Research 21, B21–B36 (1977). https://doi.org/10.1007/BF01920734

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01920734

Keywords

Navigation