Summary
This paper considers the problem of minimizing a convex differentiable function subject to convex differentiable constraints. Necessary and sufficient conditions (not requiring any constraints qualification) for a point to be an optimal solution are given in terms of a parametric linear program. Dual characterization theorems are then derived, which generalizes the classical results ofKuhn-Tucker andJohn.
Zusammenfassung
Es wird das Problem betrachtet, eine konvexe differenzierbare Funktion unter konvexen differenzierbaren Nebenbedingungen zu minimieren. Unter Verwendung eines parametrischen linearen Optimierungsproblems werden notwendige und hinreichende Bedingungen für Optimalität eines Punktes angegeben, die keine constraints qualifications benötigen. Sodann werden duale Charakterisierungstheoreme hergeleitet, welche die klassischen Resultate vonKuhn-Tucker undJohn verallgemeinern.
Similar content being viewed by others
References
Bazaraa, M.S.: A Theorem of the Alternative with Application to Convex Programming: Optimality, Duality and Stability. J. Math. Anal. Applic.41 (3), 1973.
Ben-Israel, A., A. Charnes, andK.O. Kortanek: Duality and Asymptotic Solvability over Cones. Bull. Amer. Math. Soc.75, 1969, 318–324.
Ben-Tal, A., A. Ben-Israel, andS. Zlobec: Characterization of Optimality in Convex Programming without a Constraint Qualification. J. Optimiz. Th. and Appl.20, (4), 1976.
Duffin, R.J.: Infinite Programs, in Linear Inequalities and Related Systems. Ed. byH. W. Kuhn andA. W. Tucker. Annals of Math. Studies No. 38. Princeton, N.J., 1956, 157–170.
John, F.: Extremum Problems with Inequalities as Subsidiary Conditions. In Studies and Essays Courant Anniversary Volume. Ed. byK.O. Friedrichs, I.E. Neugebauer andJ.J. Stoker, N.Y., 1948, 187–204.
Kuhn, H. W., andA. W. Tucker: Nonlinear Programming. Proc. Second Berkeley Symp. on Math. Statistics and Probability. Ed. byJ. Neyman, Berkeley 1951.
Rockafellar, R. T.: Some Convex Programs whose Duals are Linearly Constrained. In Nonlinear Programming Ed. byJ.B. Rosen, O.L. Mangasarian andK. Ritter, N.Y. 1970.
—: Ordinary Convex Program without a Duality Gap. J. Optimiz. Th. and Appl.7 (3), 1971, 143–148.
Author information
Authors and Affiliations
Additional information
This research was partly supported by Project No. NR 047-021, ONR Contract N00014-75-C-0569 with the Center for Cybernetic Studies, The University of Texas. Reproduction in whole or in part is permitted for any purpose of the United States Government.
Rights and permissions
About this article
Cite this article
Ben-Tal, A., Charnes, A. Primal and dual optimality criteria in convex programming. Zeitschrift für Operations Research 21, 197–209 (1977). https://doi.org/10.1007/BF01965717
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01965717