[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Primal and dual optimality criteria in convex programming

  • Published:
Zeitschrift für Operations Research Aims and scope Submit manuscript

Summary

This paper considers the problem of minimizing a convex differentiable function subject to convex differentiable constraints. Necessary and sufficient conditions (not requiring any constraints qualification) for a point to be an optimal solution are given in terms of a parametric linear program. Dual characterization theorems are then derived, which generalizes the classical results ofKuhn-Tucker andJohn.

Zusammenfassung

Es wird das Problem betrachtet, eine konvexe differenzierbare Funktion unter konvexen differenzierbaren Nebenbedingungen zu minimieren. Unter Verwendung eines parametrischen linearen Optimierungsproblems werden notwendige und hinreichende Bedingungen für Optimalität eines Punktes angegeben, die keine constraints qualifications benötigen. Sodann werden duale Charakterisierungstheoreme hergeleitet, welche die klassischen Resultate vonKuhn-Tucker undJohn verallgemeinern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bazaraa, M.S.: A Theorem of the Alternative with Application to Convex Programming: Optimality, Duality and Stability. J. Math. Anal. Applic.41 (3), 1973.

  • Ben-Israel, A., A. Charnes, andK.O. Kortanek: Duality and Asymptotic Solvability over Cones. Bull. Amer. Math. Soc.75, 1969, 318–324.

    Google Scholar 

  • Ben-Tal, A., A. Ben-Israel, andS. Zlobec: Characterization of Optimality in Convex Programming without a Constraint Qualification. J. Optimiz. Th. and Appl.20, (4), 1976.

  • Duffin, R.J.: Infinite Programs, in Linear Inequalities and Related Systems. Ed. byH. W. Kuhn andA. W. Tucker. Annals of Math. Studies No. 38. Princeton, N.J., 1956, 157–170.

  • John, F.: Extremum Problems with Inequalities as Subsidiary Conditions. In Studies and Essays Courant Anniversary Volume. Ed. byK.O. Friedrichs, I.E. Neugebauer andJ.J. Stoker, N.Y., 1948, 187–204.

  • Kuhn, H. W., andA. W. Tucker: Nonlinear Programming. Proc. Second Berkeley Symp. on Math. Statistics and Probability. Ed. byJ. Neyman, Berkeley 1951.

  • Rockafellar, R. T.: Some Convex Programs whose Duals are Linearly Constrained. In Nonlinear Programming Ed. byJ.B. Rosen, O.L. Mangasarian andK. Ritter, N.Y. 1970.

  • —: Ordinary Convex Program without a Duality Gap. J. Optimiz. Th. and Appl.7 (3), 1971, 143–148.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was partly supported by Project No. NR 047-021, ONR Contract N00014-75-C-0569 with the Center for Cybernetic Studies, The University of Texas. Reproduction in whole or in part is permitted for any purpose of the United States Government.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Tal, A., Charnes, A. Primal and dual optimality criteria in convex programming. Zeitschrift für Operations Research 21, 197–209 (1977). https://doi.org/10.1007/BF01965717

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01965717

Keywords

Navigation