[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Lyapunov functions and autonomous differential equations in a Banach space

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

References

  1. S. K. Aalto, An iterative procedure for solving nonlinear equations in a Banach space,J. Math. Anal. Appl. 24 (1968), 689–691.

    Google Scholar 

  2. L. P. Belluce andW. A. Kirk, Nonexpansive mappings and fixed-points in Banach spaces,Illinois J. Math. 11 (1967), 474–479.

    Google Scholar 

  3. D. W. Boyd andJ. S. W. Wong, On nonlinear contractions,Proc. Amer. Math. Soc. 20 (1969), 458–464.

    Google Scholar 

  4. F. E. Browder, Nonexpansive nonlinear operators in a Banach space,Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041–1044.

    Google Scholar 

  5. F. E. Browder, Nonlinear equations of evolution and nonlinear accretive operators in Banach spaces,Bull. Amer. Math. Soc. 73 (1967), 867–874.

    Google Scholar 

  6. W. A. Coppel,Stability and Asymptotic Behavior of Differential Equations, D. C. Heath and Co., Boston, 1965.

    Google Scholar 

  7. R. DeMarr, Common fixed-points for commuting contraction mappings,Pacific J. Math. 13 (1963), 1139–1141.

    Google Scholar 

  8. P. Hartman, Generalized Lyapunov functions and functional equations,Ann. Math. Pura Appl. 69 (1965). 305–320.

    Google Scholar 

  9. V. Lakshmikanthan andS. Leela,Differential and Integral Inequalities I, Academic Press, New York, 1969.

    Google Scholar 

  10. R. H. Martin, Jr., A Global existence theorem for autonomous differential equations in a Banach space,Proc. Amer. Math. Soc. 26 (1970), 307–314.

    Google Scholar 

  11. R. H. Martin, Jr., A theorem on critical points and global asymptotic stability,J. Math. Anal. Appl. 32 (1970), in press.

  12. H. Murakami, On nonlinear ordinary and evolution equations,Funkcial. Ekvac. 9 (1966), 151–162.

    Google Scholar 

  13. M. Z. Nashed, A decomposition relative to convex sets,Proc. Amer. Math. Soc. 19 (1968), 782–786.

    Google Scholar 

  14. Chi-Lin Yen, Sufficient conditions for the existence of a rest point for a nonlinear semigroup of contractions,Notices Amer. Math. Soc. 17 (1970), 1031.

    Google Scholar 

  15. E. Zarantonello, The closure of the numerical range contains the spectrum,Pacific J. Math. 22 (1967), 575–595.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, R.H. Lyapunov functions and autonomous differential equations in a Banach space. Math. Systems Theory 7, 66–72 (1973). https://doi.org/10.1007/BF01824808

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01824808

Keywords

Navigation