References
S. K. Aalto, An iterative procedure for solving nonlinear equations in a Banach space,J. Math. Anal. Appl. 24 (1968), 689–691.
L. P. Belluce andW. A. Kirk, Nonexpansive mappings and fixed-points in Banach spaces,Illinois J. Math. 11 (1967), 474–479.
D. W. Boyd andJ. S. W. Wong, On nonlinear contractions,Proc. Amer. Math. Soc. 20 (1969), 458–464.
F. E. Browder, Nonexpansive nonlinear operators in a Banach space,Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041–1044.
F. E. Browder, Nonlinear equations of evolution and nonlinear accretive operators in Banach spaces,Bull. Amer. Math. Soc. 73 (1967), 867–874.
W. A. Coppel,Stability and Asymptotic Behavior of Differential Equations, D. C. Heath and Co., Boston, 1965.
R. DeMarr, Common fixed-points for commuting contraction mappings,Pacific J. Math. 13 (1963), 1139–1141.
P. Hartman, Generalized Lyapunov functions and functional equations,Ann. Math. Pura Appl. 69 (1965). 305–320.
V. Lakshmikanthan andS. Leela,Differential and Integral Inequalities I, Academic Press, New York, 1969.
R. H. Martin, Jr., A Global existence theorem for autonomous differential equations in a Banach space,Proc. Amer. Math. Soc. 26 (1970), 307–314.
R. H. Martin, Jr., A theorem on critical points and global asymptotic stability,J. Math. Anal. Appl. 32 (1970), in press.
H. Murakami, On nonlinear ordinary and evolution equations,Funkcial. Ekvac. 9 (1966), 151–162.
M. Z. Nashed, A decomposition relative to convex sets,Proc. Amer. Math. Soc. 19 (1968), 782–786.
Chi-Lin Yen, Sufficient conditions for the existence of a rest point for a nonlinear semigroup of contractions,Notices Amer. Math. Soc. 17 (1970), 1031.
E. Zarantonello, The closure of the numerical range contains the spectrum,Pacific J. Math. 22 (1967), 575–595.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Martin, R.H. Lyapunov functions and autonomous differential equations in a Banach space. Math. Systems Theory 7, 66–72 (1973). https://doi.org/10.1007/BF01824808
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01824808