[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Group codes on certain algebraic curves with many rational points

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We construct a series of algebraic geometric codes using a class of curves which have many rational points. We obtain codes of lengthq 2 over\(\mathbb{F}\) q , whereq = 2q 20 andq 0 = 2n, such that dimension + minimal distance ≧q 2 + 1 − q 0 (q − 1). The codes are ideals in the group algebra\(\mathbb{F}\) q [S], whereS is a Sylow-2-subgroup of orderq 2 of the Suzuki-group of orderq 2 (q 2 + 1)(q − 1). The curves used for construction have in relation to their genera the maximal number of\(\mathbb{F}\) GF q -rational points. This maximal number is determined by the explicit formulas of Weil and is effectively smaller than the Hasse—Weil bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Berman, S. D.: On the theory of group codes. Kibernetika3, 31–39 (1967)

    Google Scholar 

  2. Charpin, P.: Codes idéaux de certains algèbres modulaire. These de 3iéme cycle, Universite de Paris VII (1982)

  3. Charpin, P.: The extended Reed—Solomon codes considered as ideals of a modular algebra. Ann. Discrete Math.17, 171–176 (1983)

    Google Scholar 

  4. Charpin, P.: A new description of some polynomial codes: the primitive generalized Reed-Muller codes, preprint

  5. Chevalley, C.: Introduction to the theory of algebraic functions of one variable. Am. Math. Soc. New York: 1951

    Google Scholar 

  6. Damgård, I., Landrock, P.: Ideals and codes in group algebras. Aarhus Universitet, Preprint Series

  7. Goppa, V. D.: Codes an algebraic curves. Dokl. Akad. NAUK, SSSR,259, 1289–1290 (1981); (Soviet Math. Dokl.24, 170–172 (1981))

    Google Scholar 

  8. Goppa, V. D.: Algebraico-geometric Codes, Izv. Akad. NAUK, SSSR,46 (1982); (Math. U.S.S.R. Izvestiya,21, 75–91 (1983))

    Google Scholar 

  9. Hansen, J. P.: Codes on the Klein Quartic, Ideals and decoding. IEEE Trans. on Inform. Theory33 (1987)

  10. Hansen, J. P.: Group codes on algebraic curves. Mathematica Gottingensis, Heft 9, Feb. 1987

  11. Hasse, H.: Theorie der relativ zyklischen algebraischen Funktionenkörper. J. Reine Angew. Math.172, 37–54 (1934)

    Google Scholar 

  12. Henn, H. W.: Funktionenkörper mit grosser Automorphismengruppe. J. Reine Angew. Math.302, 96–115 (1978)

    Google Scholar 

  13. Landrock, P., Manz, O.: Classical codes as ideals in group algebras. Aarhus Universitet, Preprint Series, 1986/87 No. 18

  14. Serre, J. P.: Sur le nombre des points rationels d'une courbe algébrique sur un corps fini. C. R. Acad. Sci. Paris Sér. I Math,296, 397–402 (1983)

    Google Scholar 

  15. Serre, J. P.: Corps locaux, Paris 1962

  16. Stichtenoth, H.: On automorphisms of geometric Goppa codes. J. Alg. (to appear)

  17. Stichtenoth, H.: A note on Hermitian Codes overGF(q 2), IEEE Trans. on Inform. Theory34, 1345–1348 (1988)

    Google Scholar 

  18. Stichtenoth, H.: Self-dual Goppa Codes, J. Pure, Appl. Algebra55, 199–211 (1988)

    Google Scholar 

  19. Tiersma, H. J.: Remarks on codes from Hermitian curves. IEEE Trans. Inform. Theory33, 605–609 (1987)

    Google Scholar 

  20. Tsfasman, M. A., Vladut, S. G., Zink, Th.: Modular curves, Shimura curves and Goppa codes, better than Varshamov—Gilbert bound. Math. Nachr.109, 13–28 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Deutsche Forschungsgemeinschaft while visiting Essen University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, J.P., Stichtenoth, H. Group codes on certain algebraic curves with many rational points. AAECC 1, 67–77 (1990). https://doi.org/10.1007/BF01810849

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01810849

Keywords

Navigation