[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Passive ionic properties of frog retinal pigment epithelium

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The isolated pigment epithelium and choroid of frog was mounted in a chamber so that the apical surfaces of the epithelial cells and the choroid were exposed to separate solutions. The apical membrane of these cells was penetrated with microelectrodes and the mean apical membrane potential was −88 mV. The basal membrane potential was depolarized by the amount of the transepithelial potential (8–20mV). Changes in apical and basal cell membrane voltage were produced by changing ion concentrations on one or both sides of the tissue. Although these voltage changes were altered by shunting and changes in membrane resistance, it was possible to estimate apical and basal cell membrane and shunt resistance, and the relative ionic conductanceT i of each membrane. For the apical membrane:T K⋟0.52,T HCO 3∼=0.39 andT Na∼=0.05, and its specific resistance was estimated to be 6000–7000Ω cm2. From the basalT K∼=0.90 and its specific resistance was estimated to be 400–1200Ω cm2. From the basal potassium voltage responses the intracellular potassium concentration was estimated at 110mm. The shunt resistance consisted of two pathways: a paracellular one, due to the junctional complexes and another, around the edge of the tissue, due to the imperfect nature of the mechanical seal. In well-sealed tissues, the specific resistance of the shunt was about ten times the apical plus basal membrane specific resistances. This epithelium, therefore, should be considered “tight”. The shunt pathway did not distinguish between anions (HCO3 , Cl, methylsulfate, isethionate) but did distinguish between Na+ and K+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aickin, C.C., Thomas, R.C. 1975. Micro-electrode measurement of the internal pH of crab muscle fibers.J. Physiol. (London) 252:803.

    Google Scholar 

  • Barry, P.H., Diamond, J.H. 1970. Junction potentials, electrode standard potentials, and other problems in interpreting electrical properties of membranes.J. Membrane Biol. 3:93.

    Google Scholar 

  • Boulpaep, E.L. 1967. Ion permeability of the peritubular and luminal membrane of the renal tubular cell.In: Transport und Funktion intracellulärer Elektrolyte. F. Kruck, editor. p. 98. Urban and Schwarzenberg, München

    Google Scholar 

  • Boulpaep, E.L. 1971. Electrophysiological properties of the proximal tubule: Importance of cellular and intercellular pathways.In: Electrophysiology of Epithelia. G. Giebisch, editor. p. 91. K. Schattauer Verlag, Stuttgart

    Google Scholar 

  • Brown, K.T., Flaming, D.G. 1974. Beveling of fine micropipette electrodes by a rapid precision method.Science 185:693

    PubMed  Google Scholar 

  • Casteels, R., Droogman, G., Hendrickx, H. 1971. Membrane potential of smooth muscle cells inK-free solution.J. Physiol. (London) 217:281

    Google Scholar 

  • Diamond, J. 1966. A rapid method for determining voltage-concentration relations across membranes.J. Physiol. (London) 183:83

    Google Scholar 

  • Dowling, J.E. 1960. Chemistry of visual adaptation in the rat.Nature (London) 188:114.

    Google Scholar 

  • Finkelstein, A., Mauro, A. 1963. Equivalent circuits as related to ionic systems.Biophys. J. 3:215

    Google Scholar 

  • Frömter, E. 1972. The route of passive ion movement through the epithelium ofNecturus gallbladder.J. Membrane Biol. 8:259

    Google Scholar 

  • Frömter, E., Diamond, J. 1972. Route of passive ion permeation in epithelia.Nature New Biol. 235:9

    PubMed  Google Scholar 

  • Hagiwara, S., Fukuda, J., Eaton, D.C. 1974. Membrane currents carried by Ca, Sr and Ba in barnacle muscle fiber during voltage clamp.J. Gen. Physiol. 63:564

    Google Scholar 

  • Helman, S.I., Miller, D.A. 1973. Edge damage effect on electrical measurements of frog skin.Am. J. Physiol. 225:972

    PubMed  Google Scholar 

  • Hodgkin, A.L., Horowicz, P. 1959. The influence of potassium and chloride ions on the membrane potential of single muscle fibers.J. Physiol. (London) 148:127

    Google Scholar 

  • Hudspeth, J.A., Yes, A.G. 1973. The intercellular junctional complexes of retinal pigment epithelia.Invest. Ophthalmol. 12:354

    PubMed  Google Scholar 

  • Kidder, G.W., III, Cereijido, M., Curran, P.F. 1964. Transient changes in electrical potential difference across frog skin.Am. J. Physiol. 207:935

    PubMed  Google Scholar 

  • Kostyuk, P.G., Krishtal, O.H., Pidoplichko, V.I. 1972. Potential-dependent membrane current during the active transport of ions in snail neurons.J. Physiol. (London) 226:373

    Google Scholar 

  • Kuwabara, T. Species differences of the pigment epithelium.In: The Retinal Pigment Epithelium. K. M. Zinn and M.F. Marmor, editors. Harvard University Press, Cambridge (in press)

  • Lasansky, A., DeFisch, F.W. 1966. Potential, current and ionic fluxes across the isolated retinal pigment epithelium and choroid.J. Gen. Physiol. 49:913

    PubMed  Google Scholar 

  • MacInnes, D.A. 1961. The Principles of Electrochemistry, 2nd ed. Dover Publications, New York, p. 52

    Google Scholar 

  • Miller, S. S., Steinberg, R.H. 1977. Active transport of ions across frog retinal pigment epithelium.Exp. Eye Res. (in press)

  • Nilsson, S. E. G. 1964. An electron microscopic classification of the retinal receptors of the leopard frog (Rana pipiens).J. Ultrastruct. Res. 10:390

    PubMed  Google Scholar 

  • Noell, W.K., Crapper, D.R., Paganelli, C.V. 1965. Transretinal currents and ion fluxes.In: Transcellular Membrane Potentials and Ionic Fluxes. F. Snell and W.K. Noell, editors, Gordon and Breach, New York

    Google Scholar 

  • Paillard, M. 1972. Direct intracellular pH measurement in rat and crab muscle.J. Physiol. (London) 223:297

    Google Scholar 

  • Porter, K.R., Yamada, E. 1960. Studies on the endoplasmic reticulum. V. Its form and differentiation in pigment epithelial cells of the frog retina.J. Biophys. Biochem. Cytol. 8:181

    PubMed  Google Scholar 

  • Reuss, L., Finn, A.L. 1974. Passive electrical properties of toad urinary bladder epithelium. Intercellular electrical coupling and transepithelial cellular and shunt conductances.J. Gen. Physiol. 64:1

    PubMed  Google Scholar 

  • Rose, R.C., Schultz, S.G. 1971. Studies on the electrical potential profile across rabbit ileum. Effects of sugars and amino acids on transmural and transmucosal P.D.'s.J. Gen. Physiol. 57:639

    PubMed  Google Scholar 

  • Rothe, C.F., Quay, J.F., Armstrong, W.F. 1969. Measurement of epithelial electrical characteristics with an automatic voltage clamp device with compensation for solution resistance.IEEE Trans. Bio-Med. Engrg. BME-16, (No. 2):160

    Google Scholar 

  • Schultz, S.G. 1974. Principles of electrophysiology and their application to epithelial tissues.In: Gastrointestinal Physiology. E.D. Jacobson and L.S. Shanbur, editors. Vol. 4, p. 69. University Park Press, Baltimore

    Google Scholar 

  • Spangler, S.G., Rehm, W.S. 1968. Potential responses of nutrient membrane of frog's stomach to step changes in external K+ and Cl concentrations.Biophys. J. 8:1211

    PubMed  Google Scholar 

  • Spenny, J.G., Flemstrom, G., Shoemaker, R.L., Sachs, G. 1975. Quantitation of conductance pathways in antral gastric mucosa.J. Gen. Physiol. 65:645

    PubMed  Google Scholar 

  • Spenny, J.G., Shoemaker, R.L., Sachs, G. 1974. Microelectrode studies of fundic gastric mucosa: Cellular coupling and shunt conductance.J. Membrane Biol. 19:105

    Google Scholar 

  • Steinberg, R.H. 1973. Scanning electron microscopy of the bullfrog's retina and pigment epithelium.Z. Zellforsch. 143:451

    PubMed  Google Scholar 

  • Steinberg, R.H., Miller, S. 1973. Aspects of electrolyte transport in frog pigment epithelium.Z. Zellforsch. 143:451

    PubMed  Google Scholar 

  • Steinberg, R.H., Miller, S. 1973. Aspects of electrolyte transport in frog pigment epithelium.Exp. Eye Res. 16:365

    PubMed  Google Scholar 

  • Thomas, R.C. 1974. Intracellular pH of snail neurones measured with a new pH-sensitive glass microelectrode.J. Physiol. (London) 238:159

    Google Scholar 

  • Woodbury, J.W. 1971. Fluxes of H+ and HCO3 across frog skeletal muscle cell membranes.In: Ion Homeostasis of the Brain. B.K. Siesjo and S.C. Sorenson, editor. p. 270. Munksgaard, Copenhagen

    Google Scholar 

  • Wright, E.M., Diamond, J.M. 1968. Effects of pH and polyvalent cations on the selective permeability of gall-bladder epithelium to monovalent ions.Biochim. Biophys. Acta 163:57

    PubMed  Google Scholar 

  • Young, R.W. 1969. The organization of vertebrate photoreceptor cells.In: The Retina. B.R. Straatsma, M.O. Hall, R.A. Allen, and F. Crescitelli, editors. p. 177. University of California Press, Berkeley and Los Angeles

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, S.S., Steinberg, R.H. Passive ionic properties of frog retinal pigment epithelium. J. Membrain Biol. 36, 337–372 (1977). https://doi.org/10.1007/BF01868158

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868158

Keywords

Navigation