Abstract
This paper argues that the use of the odds ratio parameter in epidemiology needs to be considered with a view to the specific study design and the types of exposure and disease data at hand. Frequently, the odds ratio measure is being used instead of the risk ratio or the incidence-proportion ratio in cohort studies or as an estimate for the incidence-density ratio in case-referent studies. Therefore, the analyses of epidemiologic data have produced biased estimates and the presentation of results has been misleading. However, the odds ratio can be relinquished as an effect measure for these study designs; and, the application of the case-base sampling approach permits the incidence ratio and difference measures to be estimated without any untenable assumptions. For the Poisson regression, the odds ratio is not a parameter of interest; only the risk or rate ratio and difference are relevant. For the conditional logistic regression in matched case-referent studies, the odds ratio remains useful, but only when it is interpreted as an estimate of the incidence-density ratio. Thus the odds ratio should, in general, give way to the incidence ratio and difference as the measures of choice for exposure effect in epidemiology.
Similar content being viewed by others
References
Pearce N. What does the odds ratio estimate in a case-control study? Int J Epidemiol 1993; 22: 1189–1192.
Lee J. Odds ratio for cross-sectional data? Int J Epidemiol 1994; 23: 201–203.
Miettinen OS. Theoretical epidemiology: Principles of occurrence research in medicine. Albany, NY; Delmar Publishers, 1985.
Breslow NE, Day NE. Statistical methods in cancer research, Vol. 1: The design and analysis of case-control studies. Lyon: International Agency for Research on Cancer, 1980. IARC Scientific publications, No. 32.
Breslow NE, Day NE. Statistical methods in cancer research, Vol 2: The design and analysis of cohort studies. Lyon: International Agency for Research on Cancer, 1987. IARC Scientific Publications, No. 82.
Gail MH. A bibliography and comments on the use of statistical models in epidemiology in the 1980s. Stat Med 1991; 10: 1819–1885.
Sinclair JC, Bracken MB. Clinically useful measures of effect in binary analyses of randomised trials. J. Clin Epidemiol 1994; 47: 881–889.
Greenland S. Interpretation and choice of effect measures in epidemiologic analyses. Am J Epidemiol 1987; 125: 761–788.
Miettinen OS, Cook EF. Confounding: Essence and detection. Am J Epidemiol 1981; 114: 593–603.
Greenland S, Robins J. Identifiability, exchangeability and epidemiologic confounding. Int J Epidemiol 1986; 15: 413–419.
Gail MH, Wieand S, Piandatosi S. Biased estimates of treatment effect in randomised experiments with nonlinear regressions and omitted covariables. Biometrika 1984; 71: 431–344.
Savitz DA. Measurements, estimates, and inferences in reporting epidemiologic study results [editorial]. Am J Epidemiol 1992; 135: 223–224.
Axelson O, Fredrikson M, Ekberg K. A comment on the implications of using odds ratios or prevalence ratios in cross-sectional studies. In: Hemon D (ed), Book of abstracts of the 8th International Symposium Epidemiology in Occupational Health, 10–12 September 1991, Paris, 1991: 23.
Axelson O, Fredrikson M, Ekberg K. Use of the prevalence ratiov the prevalence odds ratio as a measure of risk in cross sectional studies. Occup and Environ Med 1994; 51: 574.
Leino T, Tammilehto L, Luukkonen R, Kanerva L, Nordman H. Respiratory and skin symptoms in hairdressers. In: Program résumé of the 43rd Nordic Work Environment Meeting, 28–30 August 1994, Loen, Norway, 1994: 87.
Viikari-Juntura E, Riihimäki H, Tola S, Videman T, Mutanen P. Neck trouble in machine operating, dynamic physical work and sedentary work: A prospective study on occupational and individual risk factors. J Clin Epidemiol 1994; 47: 1411–1422.
Greenland S. Modelling risk ratios from matched cohort data: An estimating equation approach. Appl Statist 1994; 43: 223–232.
Greenland S, Thomas DC. On the need for the rare disease assumption in case-control studies. Am J Epidemiol 1982; 116: 547–553.
Wacholder S. Binomial regression in GLIM: Estimating risk ratios and risk differences. Am J Epidemiol 1986; 123: 174–184.
Greenland S. Limitations of the logistic analysis of epidemiologic data. Am J Epidemiol 1979; 110: 693–698.
Manton KG, Stallard E. Chronic disease modelling: Measurement and evaluation of the risks of chronic disease processes. London: Charles Griffin & Company Ltd, 1988. Mathematics in medicine, No. 2.
Berry G, Mandryk J, Mock P. Presentation of results of logistic regression: Analyses of cohort and cross-sectional studies. In: Francis IS, Manly BFJ, Lam FC (eds), Pacific Statistical Congress. Amsterdam: Elsevier Science Publishers (North-Holland), 1986: 79–82.
Cornfield J. A method of estimating comparative rates from clinical data: Applications to cancer of the lung, breast and cervix. J Natl Cancer Inst 1951; 11: 1269–1275.
Greenland S, Thomas DC, Morgenstern H. The rare-disease assumption revisited: A critique of ‘estimators of relative risk for case-control studies’. Am J Epidemiol 1986; 124: 869–876.
Kupper LL, McMichael AJ, Spritas R. A hybrid epidemiologic study design useful in estimating relative risk. Am Stat Assoc 1975; 70: 524–528.
Miettinen OS. Estimability and estimation incase-referent studies. Am J Epidemiol 1976; 103: 226–235.
Miettinen O. Design options in epidemiologic research: an update. Scand J Work Environ Health 1982; 8 (suppl 1): 7–14.
Miettinen O, Nurminen M. Comparative analysis of two rates. Stat Med 1985; 4: 213–226.
Greenland S. Adjustment of risk ratios in case-base studies (hybrid epidemiologic designs). Stat Med 1986; 5: 579–584.
Miettinen OS, Caro JJ. Principles of nonexperimental assessment of excess risk, with special reference to adverse drug reactions. J Clin Epidemiol 1989; 42: 325–331.
Nurminen M. Analysis of epidemiologic case-base studies for binary data. Stat Med 1989; 8: 1241–1254.
Greenland S. Interpretation and estimation of summary ratios under heterogeneity. Stat Med 1982; 1: 217–227.
Nurminen M. Assessment of excess risk in case-base studies. J Clin Epidemiol 1992; 45: 1081–1092.
Wacholder S. Practical considerations in choosing between the case-cohort and nested case-control designs. Epidemiology 1991; 2: 155–158.
Wacholder S, Boivin J-F. External comparisons with the case-cohort design. Am J Epidemiol 1987; 126: 1208–1209.
Rothman KJ. Modern epidemiology. Boston, MA: Little, Brown and Company, 1986.
Prentice R. Use of the logistic model in retrospective studies. Biometrics 1976; 32: 599–606.
Prentice RL. A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika 1986; 73: 1–11.
Schouten EG, Decker JM, Kok FJ, Le Cessie S, Van Houwelingen HC, Pool J, Wandenbroucke JP. Risk ratio and rate ratio estimation in case-cohort designs: Hypertension and cardiovascular mortality. Stat Med 1993; 12: 1733–1745.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nurminen, M. To use or not to use the odds ratio in epidemiologic analyses?. Eur J Epidemiol 11, 365–371 (1995). https://doi.org/10.1007/BF01721219
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF01721219