Abstract
In this paper the notion of a contraction mapping on a probabilistic metric space is introduced, and several fixed-point theorems for such mappings are proved.
Similar content being viewed by others
References
M. Edelstein, (i) On fixed and periodic points under contractive mapping,J. London Math. Soc. 37 (1962), 74–79; (ii) An extension of Banach's contraction principle,Proc. Amer. Math. Soc. 12 (1961), 7–10.
K. Menger, Statistical metrics,Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 535–537.
O. Onicescu,Nombres et Systèmes Aléatoires, Éditions de l'Académie de la R. P. Roumaine, Bucarest, 1964.
B. Schweizer, Probabilistic metric spaces—the first 25 years,The N.Y. Statistician 19 (1967), 3–6.
B. Schweizer, Probabilistic metric spaces,Probabilistic Methods in Applied Mathematics (A. T. Bharucha-Reid, ed.), Vol. 4, Academic Press, New York (to appear).
B. Schweizer andA. Sklar, Statistical metric spaces,Pacific J. Math. 10 (1960), 313–334.
B. Schweizer, A. Sklar andE. Thorp, The metrization of statistical metric spaces,Pacific J. Math. 10 (1960) 673–675.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Sehgal, V.M., Bharucha-Reid, A.T. Fixed points of contraction mappings on probabilistic metric spaces. Math. Systems Theory 6, 97–102 (1972). https://doi.org/10.1007/BF01706080
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01706080