[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A note on topological linearization of locally compact transformation groups in hilbert space

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

References

  1. P. C. Baayen andJ. de Groot, Linearization of locally compact transformation groups in Hilbert space,Math. Systems Theory 2 (1968), 363–379.

    Google Scholar 

  2. P. C. Baayen, Topological Linearization of Locally Compact Transformation Groups, Report no. 2, Wiskundig Seminarium of the Free University, Amsterdam, 1967.

    Google Scholar 

  3. B. F. Bryant, On expansive homeomorphisms,Pacific J. Math. 10 (1960), 1163–1167.

    Google Scholar 

  4. M. Eisenberg, Expansive transformation semigroups of endomorphisms,Fund. Math. 59 (1966), 313–321.

    Google Scholar 

  5. E. Hewitt andK. A. Ross,Abstract Harmonic Analysis I, Springer-Verlag, Bedin-Heidelberg-New York, 1963.

    Google Scholar 

  6. S. Kakutani, A proof of Bebutov's theorem,J. Differential Equations 4 (1968), 194–201.

    Google Scholar 

  7. A. B. Paalman-de Miranda, A note on W-groups,Math. Systems Theory 5 (1971), 168–171.

    Google Scholar 

  8. Ping-Fun Lam, On expansive transformation groups,Trans. Amer. Math. Soc. 150 (1970), 131–138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Vries, J. A note on topological linearization of locally compact transformation groups in hilbert space. Math. Systems Theory 6, 49–59 (1972). https://doi.org/10.1007/BF01706073

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01706073

Keywords

Navigation