[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On a stochastic integral equation of the Volterra type

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

References

  1. A. T. Bharucha-Reid,Proceedings of Symposia in Applied Mathematics,XVI, pp. 40–69. American Mathematical Society, Providence, Rhode Island, 1964.

    Google Scholar 

  2. O. Hans, Random operator equations.Proc. 4th Berkeley Sympos., Math. Statist. and Prob.,II (1960), pp. 185–202; Univ. of California Press, Berkeley, Calif., 1961.

    Google Scholar 

  3. A. T. Bharucha-Reid, On random solutions of Fredholm integral equations,Bull. Amer. Math. Soc. 66 (1960), 104–109.

    Google Scholar 

  4. A. T. Bharucha-Reid, On random solutions space,Trans. 2nd Prague Conf. Information Theory, pp. 27–48, Publ. House Czechoslovak Acad. Sci., Prague, 1960.

  5. M. W. Anderson,Stochastic Integral Equations. Dissertation, University of Tennessee, 1966.

  6. C. Corduneanu, Problèmes globaux dans le théorie des équations intégrales de Volterra,Ann. Mat. Pura Appl. (4)67 (1965), 349–363.

    Google Scholar 

  7. K. Yoshida,Functional Analysis, Springer-Verlag, Berlin-Heidelberg-New York, 1965.

    Google Scholar 

  8. T. Morozan, Stability of linear systems with random parameters,J. Differential Equations 3 (1967), 170–178.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsokos, C.P. On a stochastic integral equation of the Volterra type. Math. Systems Theory 3, 222–231 (1969). https://doi.org/10.1007/BF01703921

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01703921

Keywords

Navigation