[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Isomorphism and parallelizability in dynamical systems theory

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

References

  1. D. H. Carlson, A generalization of Vinograd's theorem for dynamical systems,J. Differential Equations 11 (1972), 193–201.

    Google Scholar 

  2. C. H. Dowker, On countably paracompact spaces,Canad. J. Math. 1 (1951), 219–224.

    Google Scholar 

  3. J. Dugundji andH. A. Antosiewicz, Parallelizable flows and Lyapunov's second method,Ann. of Math. 73 (1961), 543–555.

    Google Scholar 

  4. J. Egawa, Global parallelizability of local dynamical systems,Math. Systems Theory 6 (1972), 133–144.

    Google Scholar 

  5. L. C. Glaser, Uncountably many contractible open 4-manifolds,Topology 6 (1967), 37–42.

    Google Scholar 

  6. O. Hájek, Parallelizability revisited,Proc. Amer. Math. Soc. 27 (1971), 77–84.

    Google Scholar 

  7. O. Hájek, Ordinary and asymptotic stability of noncompact sets,J. Differential Equations 11 (1972). 49–65.

    Google Scholar 

  8. I. Kimura, Isomorphism of local dynamical systems and separation axioms for phase spaces,Funkcial. Ekvac. 13 (1970), 23–34.

    Google Scholar 

  9. E. Luft, On contractible open topological manifolds,Invent. Math. 4 (1967), 192–201.

    Google Scholar 

  10. L. Markus, Parallel dynamical systems,Topology 8 (1969), 47–57.

    Google Scholar 

  11. D. R. McMillan, Some contractible open 3-manifolds,Trans. Amer. Math. Soc. 102 (1962), 373–382.

    Google Scholar 

  12. V. V. Nemyckii andV. V. Stepanov,Qualitative Theory of Differential Equations, Princeton Univ. Press, Princeton, N.J., 1960.

    Google Scholar 

  13. G. R. Sell, Nonautonomous differential equations and topological dynamics, I: The basic theory,Trans. Amer. Math. Soc. 127 (1967), 241–262.

    Google Scholar 

  14. H. Tong, Some characterizations of normal and perfectly normal spaces,Duke Math. J. 19 (1952), 289–292.

    Google Scholar 

  15. T. Ura, Local isomorphisms and local parallelizability in dynamical systems theory,Math. Systems Theory 3 (1969), 1–16.

    Google Scholar 

  16. T. Ura, Isomorphisms and local characterization of local dynamical systems,Funkcial. Ekvac. 12 (1969), 99–122.

    Google Scholar 

  17. T. Ura, Local dynamical systems and their isomorphisms,Japan-U.S. Seminar on Ordinary Differential and Functional Equations 1971, pp. 76–90, Lecture Notes in Mathematics 243, Springer-Verlag, Berlin-Heidelberg-New York, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ura, T., Egawa, J. Isomorphism and parallelizability in dynamical systems theory. Math. Systems Theory 7, 250–264 (1973). https://doi.org/10.1007/BF01795943

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01795943

Keywords

Navigation