References
D. H. Carlson, A generalization of Vinograd's theorem for dynamical systems,J. Differential Equations 11 (1972), 193–201.
C. H. Dowker, On countably paracompact spaces,Canad. J. Math. 1 (1951), 219–224.
J. Dugundji andH. A. Antosiewicz, Parallelizable flows and Lyapunov's second method,Ann. of Math. 73 (1961), 543–555.
J. Egawa, Global parallelizability of local dynamical systems,Math. Systems Theory 6 (1972), 133–144.
L. C. Glaser, Uncountably many contractible open 4-manifolds,Topology 6 (1967), 37–42.
O. Hájek, Parallelizability revisited,Proc. Amer. Math. Soc. 27 (1971), 77–84.
O. Hájek, Ordinary and asymptotic stability of noncompact sets,J. Differential Equations 11 (1972). 49–65.
I. Kimura, Isomorphism of local dynamical systems and separation axioms for phase spaces,Funkcial. Ekvac. 13 (1970), 23–34.
E. Luft, On contractible open topological manifolds,Invent. Math. 4 (1967), 192–201.
L. Markus, Parallel dynamical systems,Topology 8 (1969), 47–57.
D. R. McMillan, Some contractible open 3-manifolds,Trans. Amer. Math. Soc. 102 (1962), 373–382.
V. V. Nemyckii andV. V. Stepanov,Qualitative Theory of Differential Equations, Princeton Univ. Press, Princeton, N.J., 1960.
G. R. Sell, Nonautonomous differential equations and topological dynamics, I: The basic theory,Trans. Amer. Math. Soc. 127 (1967), 241–262.
H. Tong, Some characterizations of normal and perfectly normal spaces,Duke Math. J. 19 (1952), 289–292.
T. Ura, Local isomorphisms and local parallelizability in dynamical systems theory,Math. Systems Theory 3 (1969), 1–16.
T. Ura, Isomorphisms and local characterization of local dynamical systems,Funkcial. Ekvac. 12 (1969), 99–122.
T. Ura, Local dynamical systems and their isomorphisms,Japan-U.S. Seminar on Ordinary Differential and Functional Equations 1971, pp. 76–90, Lecture Notes in Mathematics 243, Springer-Verlag, Berlin-Heidelberg-New York, 1971.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ura, T., Egawa, J. Isomorphism and parallelizability in dynamical systems theory. Math. Systems Theory 7, 250–264 (1973). https://doi.org/10.1007/BF01795943
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01795943