[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Complexity classes and theories of finite models

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

Abstract

LetL \( \subseteq \)Σ* be accepted in timef(n) by a nondeterministic Turing machine. Then there is a monadic existential second-order sentence σ in the language of + such that for everyx∈Σ*,x∈L if and only if a certain structureU f x of cardinalityf(|x|) satisfies σ. It follows that ifL is accepted in nondeterministic timen d, d a natural number, then there is a sentence whose relational symbols ared-ary or less, whose finite spectrum isL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Asser, Das Repräsentantenproblem im Prädikatenkalkül der ersten Stufe mit Identität,Z. Math. Logik Grundlagen Math. 1, 252–263, 1955.

    Google Scholar 

  2. J. R. Büchi, Weak second-order arithmetic and finite automata,Z. Math. Logik Grundlagen Math. 6, 66–92, 1960.

    Google Scholar 

  3. S. A. Cook, The complexity of theorem-proving procedures,Proc. Third Annual ACM Symp. on Theory of Computing, 151–158, 1971.

  4. S. A. Cook, A hierarchy for nondeterministic time complexity,J. Comp. Sys. Sci. 7, 343–353, 1973.

    Google Scholar 

  5. A. Ehrenfeucht, An application of games to the completeness problem for formalized theories,Fund. Math. 49, 129–141, 1961.

    Google Scholar 

  6. C. C. Elgot, Decision problems of finite-automata design and related arithmetics,Trans. AMS 98, 21–51, 1961.

    Google Scholar 

  7. R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets,Complexity of Computation, R. M. Karp, ed., AMS, Providence, 43–73, 1974.

    Google Scholar 

  8. R. Fagin, Monadic generalized spectra,Z. Math. Logic Grundlagen Math. 21, 89–96, 1975.

    Google Scholar 

  9. M. R. Garey and D. S. Johnson,Computers and Intractability, W. H. Freeman and Co., San Francisco, 1979.

    Google Scholar 

  10. J. E. Hopcroft and J. D. Ullman,Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading, Mass., 1979.

    Google Scholar 

  11. N. Immerman, Length of predicate calculus formulas as a new complexity measure,Proc. 20th Annual Symp. on Foundations of Computer Science, 337–347, 1979.

  12. N. D. Jones and A. L. Selman, Turing machines and the spectra of first-order formulas with equality,J. Symbolic Logic 39, 139–150, 1974.

    Google Scholar 

  13. R. M. Karp, Reducibility among combinatorial problems,Complexity of Computer Computations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 85–104, 1972.

    Google Scholar 

  14. H. R. Lewis, Complexity of solvable cases of the decision problem for the predicate calculus,Proc. 19th Annual Symp. on Foundations of Computer Science, 35–47, 1978.

  15. J. F. Lynch, Almost sure theories,Ann. Math. Logic 18, 91–135, 1980.

    Google Scholar 

  16. J. F. Lynch, On sets of relations definable by addition, to appear inJ. Symbolic Logic.

  17. J. D. Monk,Mathematical Logic, Springer-Verlag, New York, 1976.

    Google Scholar 

  18. R. W. Ritchie, Classes of predictably computable functions,Trans. AMS 106, 139–173, 1963.

    Google Scholar 

  19. H. Scholz, Problem # 1,J. Symbolic Logic 17, 160, 1952.

    Google Scholar 

  20. L. J. Stockmeyer, The polynomial-time hierarchy,Theoretical Computer Science 3, 1–22, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was partially supported by NSF Grants MCS78-01832 and MCS-8002695.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lynch, J.F. Complexity classes and theories of finite models. Math. Systems Theory 15, 127–144 (1981). https://doi.org/10.1007/BF01786976

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01786976

Keywords

Navigation