[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Decomposition and intersection of simple splinegons

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

A splinegon is a polygon whose edges have been replaced by “well-behaved” curves. We show how to decompose a simple splinegon into a union of monotone pieces and into a union of differences of unions of convex pieces. We also show how to use a fast triangulation algorithm to test whether two given simple splinegons intersect. We conclude with examples of splinegons that make the extension of algorithms from polygons to splinegons difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Chazelle and D. P. Dobkin, Optimal convex decompositions, inMachine Intelligence and Pattern Recognition 2: Computational Geometry(G. T. Toussaint, ed.), Elsevier Science, North Holland, Amsterdam, 1985, pp. 63–133.

    Google Scholar 

  2. B. Chazelle and D. P. Dobkin, Intersection of convex objects in two and three dimensions,J. Assoc. Comput. Mach.,34 (1987), 1–27.

    MathSciNet  Google Scholar 

  3. B. Chazelle and J. Incerpi, Triangulation and shape-complexity,ACM Trans. Graphics,3 (1984), 135–152.

    Article  MATH  Google Scholar 

  4. J. Dugundji,Topology, Allyn and Bacon, Reading, MA, 1966.

    MATH  Google Scholar 

  5. H.-Y. F. Feng and T. Pavlidis, Decomposition of polygons into simpler components: feature generation for syntactic pattern recognition,IEEE Trans. Comput.,24 (1975), 636–650.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Fournier and D. Y. Montuno, Triangulating simple polygons and equivalent problems,ACM Trans. Graphics,3 (1984), 153–174.

    Article  MATH  Google Scholar 

  7. D. H. Greene, The decomposition of polygons into convex parts, inAdvances in Computing Research (F. P. Preparata, ed.), Vol. 1, JAI Press, Greenwich, CT, 1983, pp. 235–259.

    Google Scholar 

  8. J. Hershberger, private communication.

  9. J. G. Hocking and G. S. Young,Topology, Addison-Wesley, Reading, MA, 1961.

    MATH  Google Scholar 

  10. K. Hoffman, K. Mehlhorn, P. Rosenstiehl, and R. E. Tarjan, Sorting Jordan sequences in linear time using level-linked search trees,Inform, and Control,68 (1986), 170–184.

    Article  MathSciNet  Google Scholar 

  11. J. M. Keil, Decomposing a polygon into simpler components,SIAM J. Comput.,14 (1985), 799–817.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. M. Keil and J. R. Sack, Minimum decompositions of polygonal objects, inMachine Intelligence and Pattern Recognition 2: Computational Geometry (G. T. Toussaint, ed.), Elsevier Science, North Holland, Amsterdam, 1985, pp. 197–216.

    Google Scholar 

  13. D. Kirkpatrick, Optimal search in planar subdivisions,SIAM J. Comput.,12 (1983), 28–35.

    Article  MATH  MathSciNet  Google Scholar 

  14. D. T. Lee and F. P. Preparata, Location of a point in a planar subdivision and its applications,SIAM J. Comput.,6 (1977), 594–606.

    Article  MATH  MathSciNet  Google Scholar 

  15. D. T. Lee and F. P. Preparata, Computational geometry—a survey,IEEE Trans. Comput.,33 (1984), 1072–1101.

    Article  MathSciNet  Google Scholar 

  16. S. Lefschetz,Introduction to Topology, Princeton University Press, Princeton, NJ, 1949.

    MATH  Google Scholar 

  17. F. P. Preparata and M. I. Shamos,Computational Geometry: An Introduction, Springer-Verlag, New York, 1985.

    Google Scholar 

  18. B. Schachter, Decompositions of polygons into convex sets,IEEE Trans. Comput.,27 (1978), 1078–1082.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. A. Schäffer and C. J. Van Wyk, Convex hulls of piecewise-smooth Jordan curves,J. Algorithms,8 (1987), 66–94.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. I. Shamos and D. Hoey, Geometric intersection problems,Proceedings of the 17th Annual IEEE Symposium on Foundations of Computer Science, Houston, TX, 1976, pp. 208–215.

  21. D. L. Souvaine, Computational geometry in a curved world, Ph.D. Dissertation, Princeton University, 1986.

  22. R. E. Tarjan and C. J. Van Wyk, AnO(n log logn)-time algorithm for triangulating simple polygons,SIAM J. Comput. (to appear).

  23. C. J. Van Wyk, Clipping to the boundary of a circular-arc polygon,Comput. Vision Graphics Image Process.,25 (1984), 383–392.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. T. Lee.

Work on this paper by David A. Dobkin and Diane L. Souvaine was partially supported by National Science Foundation Grants MCS 83-03926 and DCR 85-05517. Diane L. Souvaine was also partially supported by an Exxon Foundation Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobkin, D.P., Souvaine, D.L. & Van Wyk, C.J. Decomposition and intersection of simple splinegons. Algorithmica 3, 473–485 (1988). https://doi.org/10.1007/BF01762127

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01762127

Key words

Navigation