[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Monodromy for the hypergeometric function n F n −1

  • Published:
Inventiones mathematicae Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

References

  • [Ba] Bailey, W.N.: On certain relations between hypergeometric series of higher order. J. London Math. Soc.8, 100–107 (1933)

    Google Scholar 

  • [Bo] Borel, A.: Linear algebraic groups. New York: Benjamin 1969

    Google Scholar 

  • [Bou] Bourbaki, N.: Groupes et Algèbres de Lie, Chap. 4, 5, 6. Paris: Hermann 1981

    Google Scholar 

  • [Co] Cohen, A.M.: Finite complex reflection groups. Ann. Sci. Éc. Norm. Super., IU. Ser.9, 379–436 (1976); erratum in11, 613 (1978)

    Google Scholar 

  • [E] Erdélyi, A.: Higher transcendental functions, Vol I. Bateman Manuscript Project, New York: McGraw-Hill 1953

    Google Scholar 

  • [Ho] Honda, T.: Algebraic differential equations. INDAM Symposia Math.XXIV, 169–204 (1981)

    Google Scholar 

  • [Hu] Humphreys, J.E.: Introduction to Lie algebras and representation theory, Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  • [I] Ince, E.L.: Ordinary differential equations. Dover publ. 1956

  • [Kat] Katz, N.M.: Algebraic solutions of differential equations. Invent. Math.18, 1–118 (1972)

    Google Scholar 

  • [Kap] Kaplansky, I.: An introduction to differential algebra. Paris: Hermann 1957

    Google Scholar 

  • [Kl] Klein, F.: Vorlesungen über die hypergeometrische Funktion. Berlin-Heidelberg-New York: Springer 1933

    Google Scholar 

  • [La] Landau, E.: Eine Anwendung des Eisensteinschen Satz auf die Theorie der Gausschen Differentialgleichung. J. Reine Angew. Math. 127 92–102 (1904); (reprinted in Collected Works, Vol. II, pp. 98–108, Thales Verlag, Esssen 1987

    Google Scholar 

  • [Le] Levelt, A.H.M.: Hypergeometric functions. Thesis, University of Amsterdam 1961

  • [Mi] Mitchell, H.H.: Determination of all primitive collineation groups in more than four variables which contain homologies. Am. J. Math.36, 1–21 (1914)

    Google Scholar 

  • [Mo] Mostow, G.D.: Braids, hypergeometric functions and lattices. Bull. Am. Math. Soc.16, 225–246 (1987)

    Google Scholar 

  • [Pl] Plemelj, J.: Problems in the sense of Riemann and Klein. Interscience Publ. 1964

  • [Po] Pochhammer, L.: Zur Theorie der allgemeineren hypergeometrische Reihe. J. Reine Angew. Math. 102, 76–159 (1988)

    Google Scholar 

  • [R] Riemann, B.: Gesammelte mathematische Werke, Teubner, Leipzig 1892

    Google Scholar 

  • [Sc] Schwarz, H.A.: Über diejenigen Fälle in welchen einer algebraische Funktion ihres vierten Elementes darstellt. Crelle J75, 292–335 (1873)

    Google Scholar 

  • [ST] Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Can. J. Math.6, 274–304 (1954)

    Google Scholar 

  • [T] Thomae, J.: Über die höheren hypergeometrischen Reihen. Math. Ann.2, 427–444 (1870)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beukers, F., Heckman, G. Monodromy for the hypergeometric function n F n −1. Invent Math 95, 325–354 (1989). https://doi.org/10.1007/BF01393900

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01393900

Keywords

Navigation