[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On Artin's conjecture and Euclid's algorithm in global fields

  • Published:
Inventiones mathematicae Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

References

  1. Aigner, A.: Quadratische und kubische Restkriterien für das Auftreten einer Fibonacci-Primitivwurzel. J. reine angew. Math.274/275, 139–140 (1975)

    Google Scholar 

  2. Artin, E.: Collected papers. Reading, Mass.: Addison-Wesley 1965

    Google Scholar 

  3. Bilharz, H.: Primdivisoren mit vorgegebener Primitivwurzel. Math. Ann.114, 476–492 (1937)

    Google Scholar 

  4. Bombieri, E.: Counting points on curves over finite fields (d'après S.A. Stepanov), Sém. Bourbaki25 (1973), exp. 430, Lecture Notes in Mathematics383. Berlin-Heidelberg-New York: Springer 1974

    Google Scholar 

  5. Cooke, G., Weinberger, P.J.: On the construction of division chains in algebraic number fields, with applications toSL 2. Commun. Algebra3, 481–524 (1975)

    Google Scholar 

  6. Goldstein, L.J.: Analogues of Artin's conjecture. Trans. Amer. math. Soc.149, 431–442 (1970); Bull. Amer. math. Soc.74, 517–519 (1968)

    Google Scholar 

  7. Goldstein, L.J.: Density questions in algebraic number theory. Amer. math. Monthly78, 342–351 (1971)

    Google Scholar 

  8. Goldstein, L.J.: Some remarks on arithmetic density questions. Proc. Symp. Pure Math.24 (Analytic number theory), 103–110, Amer. math. Soc. 1973

    Google Scholar 

  9. Hasse, H.: Über die Artinsche Vermutung und verwandte Dichtefragen. Ann. Acad. Sci. Fennicae, Ser. A,116 (1952)

  10. Heilbronn, H.A.: On an inequality in the elementary theory of numbers. Proc. Cambridge Philos. Soc.33, 207–209 (1937)

    Google Scholar 

  11. Hooley, C.: On Artin's conjecture. J. reine angew. Math.225, 209–220 (1967)

    Google Scholar 

  12. Hooley, C.: Applications of sieve methods to the theory of numbers. Cambridge: Cambridge University Press 1976

    Google Scholar 

  13. Lang, S.: Algebraic number theory. Reading, Mass.: Addison-Wesley 1970

    Google Scholar 

  14. Lehmer, D.H., Lehmer, Emma: Heuristics, anyone?, pp. 202–210. In: G. Szegö et al. (eds), Studies in mathematical analysis and related topics, Essays in honor of George Pólya, Stanford University Press, Stanford 1962

    Google Scholar 

  15. Lenstra, Jr., H.W.: Perfect arithmetic codes of order one. In preparation

  16. Matthews, K.R.: A generalization of Artin's conjecture for primitive roots. Acta arithmetica29, 113–146 (1976)

    Google Scholar 

  17. Möller, H.: Zur Verteilung der Restindizes ganzer Zahlen. Ber. Ges. Math. Datenverarbeitung, Bonn,57, 83–98 (1972)

    Google Scholar 

  18. Prachar, K.: Primzahlverteilung. Berlin-Heidelberg-New York: Springer 1957

    Google Scholar 

  19. Queen, C.: Arithmetic euclidean rings. Acta arithmetica26, 105–113 (1974)

    Google Scholar 

  20. Queen, C.: Some arithmetic properties of subrings of function fields over finite fields. Arch. Math.26, 51–56 (1975)

    Article  Google Scholar 

  21. Rieger, G.J.: Verallgemeinerung eines Satzes von Romanov und anderes. Math. Nachr.20, 107–122 (1959)

    Google Scholar 

  22. Ryser, H.J.: Combinatorial mathematics. Carus Math. Monographs14, Math. Ass. of America, 1963

  23. Samuel, P.: About euclidean rings. J. Algebra19, 282–301 (1971)

    Article  Google Scholar 

  24. Shanks, D.: Fibonacci primitive roots. Fibonacci Qu.10, 163–168, 181 (1972); cf. ibidem Shanks, D.: Fibonacci primitive roots. Fibonacci Qu.11, 159–160 (1973)

    Google Scholar 

  25. Shanks, D.: Review of: S. Yates, “Prime period lengths”. Math. Comp.29, 1162–1163 (1975)

    Google Scholar 

  26. Shanks, D.: Review of: R. Baillie, “Data on Artin's conjecture”. Math. Comp.29, 1164–1165 (1975)

    Google Scholar 

  27. Vinogradov, A.I.: ArtinL-series and his conjectures. Proc. Steklov Inst. Math.112, 124–142 (1971)

    Google Scholar 

  28. Weil, A.: Sur les courbes algébriques et les variétés qui s'en déduisent. Paris: Hermann 1948

    Google Scholar 

  29. Weinberger, P.J.: A counterexample to an analogue of Artin's conjecture. Proc. Amer. math. Soc.35, 49–52 (1972)

    Google Scholar 

  30. Weinberger, P.J.: On euclidean rings of algebraic integers. Proc. Symp. Pure Math.24 (Analytic number theory), 321–332, Amer. math. Soc., 1973

    Google Scholar 

  31. Western, A.E., Miller, J.C.P.: Tables of indices and primitive roots. Cambridge: University Press 1968

    Google Scholar 

  32. Wrench, Jr., J.W.: Evaluation of Artin's constant and the twin prime constant. Math. Comp.15, 396–398 (1961)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Friedrich Hirzebruch

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenstra, H.W. On Artin's conjecture and Euclid's algorithm in global fields. Invent Math 42, 201–224 (1977). https://doi.org/10.1007/BF01389788

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01389788

Keywords

Navigation