Summary
This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of elliptic problems. We analyze two estimators based on recovery operators for the gradient of the approximate solution. By using superconvergence results we prove their asymptotic exactness under regularity assumptions on the mesh and the solution.
One of the estimators can be easily computed in terms of the jumps of the gradient of the finite element approximation. This estimator is equivalent to the error in the energy norm under rather general conditions. However, we show that for the asymptotic exactness, the regularity assumption on the mesh is not merely technical. While doing this, we analyze the relation between superconvergence and asymptotic exactness for some particular examples.
Similar content being viewed by others
References
Ainsworth, M., Craig, A.W.: A posteriori error estimators in the finite element method. Num. Anal. Rep. NA 88/03, Durham, England, 1988
Andreev, A.B. Lazarov, R.D.: Superconvergence of the gradient for quadratic triangular finite elements. Numer. Methods for PDEs,4, 15–32 (1988)
Babuška, I., Miller, A.: A-posteriori error estimates and adaptive techniques for the finite element method. Tech. Note BN-968, IPST, University of Maryland, 1981
Babuška, I., Miller, A.: A feedback finite element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator. Comp. Methods Appl. Mech. Engrg.61, 1–40 (1987)
Babuška, I., Rheinboldt, W.C.: A posteriori error estimators in the finite element method. Internat. J. Numer. Meth. Eng.12, 1597–1615 (1978)
Babuška, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal.15, 736–754 (1978)
Babuška, I., Rheinboldt, W.C.: Analysis of optimal finite element meshes inR 1. Math. Comp.33, 435–463 (1979)
Babuška, I., Rheinboldt, W.C.: A posteriori error analysis of finite element solutions for one-dimensional problems. SIAM J. Numer. Anal.18, 565–589 (1981)
Bank, R.E., Weiser, A.: Some a posteriori error estimators for elliptic partial differential equations. Math. Comp.44, 283–301 (1985)
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Amsterdam: North Holland 1978
Durán, R.: On polynomial approximation in Sobolev spaces. SIAM J. Numer. Anal.5, 985–988 (1983)
Durán, R., Muschietti, M.A., Rodriguez, R.: Asymptotically exact error estimators for rectangular finite elements. (To appear)
Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Boston: Pitman 1985
Hinton, E., Ozakca, M., Rao, N.V.R.: Adaptative analysis of thin shells using facet elements. CR/950/90, University College of Swansea (1990)
Krîzěk, M., Neittaanmäki, P.: Superconvergence phenomenom in the finite element method arising from averaging gradients. Numer. Math.45, 105–116 (1984)
Levine, N.: Stress sampling points for linear triangles in the finite element method. IMA J. Numer. Anal.5, 407–427 (1985)
Lin, Q., Lü, T.: Asymptotic expansions for finite element approximation of elliptic problems on polygonal domains. In: Computing Methods in Applied Sciences and Engineering, Proc. Sixth Int. Conf. Versailles, 1983. L.N. in Comp. Sci., North-Holland, INRIA, pp. 317–321 (1984)
Mesztenyi, C., Szymczak, W.: FEARS user's manual for UNIVAC 1100. Tech. Note BN-991, IPST, University of Maryland (1982)
Oganesjan, L.A., Ruhovec, L.A.: Investigation of the convergence rate of variational-difference schemes for elliptic second order equations in a two dimensional domain with a smooth boundary. Z. Vychisl. Mat. i Mat. Fiz.9, 1102–1120 (1969) [Translation in USSR Comput. Math. Math. Phys.9, 153–188 (1969)]
Rivara, M.C.: EXPDES user's manual. Catholic Univ., Leuven, Belgium (1984)
Rivara, M.C.: Adaptive multigrid software for the finite element method. Ph.D. dissertation, Catholic. Univ., Leuven, Belgium (1984)
Verfürth, R.: A posteriori error estimators for the Stokes equations. Numer. Math.55, 309–325 (1989)
Wheeler, M.F., Whiteman, J.R.: Superconvergent recovery of gradients on subdomains from piecewise linear finite element approximations. Numer. Methods for PDEs,3, 357–374 (1987)
Whiteman, J.R., Goodsell, G.: Some gradient superconvergence results in the finite element method. In: Numerical Analysis and Parallel Processing. Lecture Notes in Math. # 1397. Berlin Heidelberg New York: Springer 182–259
Zlámal, M.: Some superconvergence results in the finite element method. In: Mathematical Aspects of the Finite Element Method, Lecture Notes in Math. # 606, pp. 353–362. Berlin Heidelberg New York: Springer 1977
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Durán, R., Muschietti, M.A. & Rodríguez, R. On the asymptotic exactness of error estimators for linear triangular finite elements. Numer. Math. 59, 107–127 (1991). https://doi.org/10.1007/BF01385773
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01385773