[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Side milling of ruled surfaces: Optimum positioning of the milling cutter and calculation of interference

  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Side milling is a process that enables machining time and thus costs, to be reduced. This type of machining is particularly well suited to ruled surfaces and all surfaces where one of the principal curvatures is very small compared to the tool radius and changes little over the entire surface. These surfaces must be treated with great care, as they are often on parts with high added value such as turbine blades, aircraft wings or helicoidal parts as used in fluid dynamics.

We then need to calculate and minimise interference that may arise if the ruled surface cannot be developed. Whereas machining is usually carried out by setting the tool according to a rule, we suggest a new setting of the tool allowing interference to be reduced considerably. The computation algorithms for this setting were developed so as to be used in real-time by CAD/CAM software.

A comparative study of errors made with each type of setting is also presented. This shows a considerable reduction in errors when the setting we suggest is implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Marciniak, “Geometric modelling for numerically controlled machining”, Oxford University Press, 1991.

  2. B. K. Choi, J. W. Park and C. S. Jun, “Cutter-location data optimization in 5-axis surface machining”, Computer-Aided Design,25(6), pp. 377–386, 1993.

    Google Scholar 

  3. T. C. Chang and Y. S. Lee, “Machined surface error analysis for 5-axis machining”, International Journal of Production Research,34(1), pp. 111–135, 1996.

    Google Scholar 

  4. S. X. Li and R. B. Jerard, “5-axis machining of sculptured surfaces with a flat-end cutter”, Computer-Aided Design,26(3), pp. 165–178, 1994.

    Google Scholar 

  5. W. Rubio, P. Lagarrigue, G. Dessein and F. Pastor, “Calculation of tool paths for a torus mill on free-form surfaces five-axis machines with detection and elimination of interference”, The International Journal of Advanced Manufacturing Technology, 14, pp. 13–20, 1998.

    Google Scholar 

  6. W. Rubio, “Génération de trajectoires du centre de l'outil pour l'usinage de surfaces complexes sur machines à trois et cinq axes”, (Generation of cutter contact trajectories for machining of complex surfaces for three- and five-axis machines), thesis presented at University of Toulouse III, France, 1993.

  7. X.-W. Liu, “Five-axis NC cylindrical milling of sculptured surfaces”, Computer-Aided Design, 27(12), pp. 887–894, 1995.

    Google Scholar 

  8. M. D. Carmo, “Differential geometry of curves and surfaces”, Prentice-Hall, 1976.

  9. D. Qiulin and B. J. Davies, “Surface engineering geometry for computer aided design and manufacture”, Ellis Horwood, 1987.

  10. I. D. Faux and M. J. Pratt, “Computational geometry for design and manufacture”, Ellis Horwood, 1985.

  11. G. Elber and F. Russ, “5 Axis free-form surface milling using piecewise ruled surface approximation”, ASME Journal of Engineering for Industry, 119(3), pp. 383–389, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Redonnet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redonnet, J.M., Rubio, W. & Dessein, G. Side milling of ruled surfaces: Optimum positioning of the milling cutter and calculation of interference. Int J Adv Manuf Technol 14, 459–465 (1998). https://doi.org/10.1007/BF01351391

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01351391

Keywords

Navigation