[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Immunocytochemistry of GABA in the brain and suboesophageal ganglion ofManduca sexta

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

We have used specific antisera against protein-conjugatedγ-aminobutyric acid (GABA) in immunocytochemical preparations to investigate the distribution of putatively GABAergic neurons in the brain and suboesophageal ganglion of the sphinx mothManduca sexta. About 20000 neurons per brain hemisphere exhibit GABA-immunoreactivity. Most of these are optic-lobe interneurons, especially morphologically centrifugal neurons of the lamina and tangential neurons that innervate the medulla or the lobula complex. Many GABA-immunoreactive neurons, among them giant fibers of the lobula plate, project into the median protocerebrum. Among prominent GABA-immunoreactive neurons of the median protocerebrum are about 150 putatively negative-feedback fibers of the mushroom body, innervating both the calyces and lobes, and a group of large, fan-shaped neurons of the lower division of the central body. Several commissures in the supra- and suboesophageal ganglion exhibit GABA-immunoreactivity. In the suboesophageal ganglion, a group of contralaterally descending neurons shows GABA-like immunoreactivity. The frontal ganglion is innervated by immunoreactive processes from the tritocerebrum but does not contain GABA-immunoreactive somata. With few exceptions the brain nerves do not contain GABA-immunoreactive fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abercrombie M (1946) Estimation of nuclear population from microtome sections. Anat Rec 94:239–247

    Google Scholar 

  • Adams ME, O'Shea M (1983) Peptide cotransmitter at a neuromuscular junction. Science 221:286–289

    PubMed  Google Scholar 

  • Arnett DW (1972) Spatial and temporal integration properties of units in the first optic ganglion of dipterans. J Neurophysiol 35:429–444

    PubMed  Google Scholar 

  • Bacon JP (1980) An homologous interneurone in a locust, a cricket and a mantid. Verh Dtsch Zool Ges 73:300

    Google Scholar 

  • Bell RA, Borg TK, Ittycheriak PI (1974) Neurosecretory cells in the frontal ganglion of the tobacco hornwormManduca sexta. J Insect Physiol 20:669–678

    PubMed  Google Scholar 

  • Bell RA, Joachim FA (1976) Techniques for rearing laboratory colonies of tobacco hornworms and pink bollworms. Ann Entomol Soc Am 69:365–373

    Google Scholar 

  • Bethe A (1897) Vergleichende Untersuchungen über die Funktionen des Centralnervensystems der Arthropoden. Pflügers Arch 68:449–545

    Google Scholar 

  • Bicker G, Schäfer S, Kingan TK (1985) Mushroom body feedback interneurons in the honeybee show GABA-like immunoreactivity. Brain Res 360:394–397

    PubMed  Google Scholar 

  • Bishop CA, O'Shea M (1982) Neuropeptide proctolin (H-Arg-Try-Leu-Pro-Thr-OH): Immunocytochemical mapping of neurons in the central nervous system of the cockroach. J Comp Neurol 207:223–238

    PubMed  Google Scholar 

  • Bishop CA, O'Shea M (1983) Serotonin immunoreactive neurons in the central nervous system of an insect (Periplaneta Americana). J Neurobiol 14:251–269

    PubMed  Google Scholar 

  • Boeckh J, Ernst KD, Sass H, Waldow U (1984) Anatomical and physiological characteristics of individual neurons in the central antennal pathway of insects. J Insect Physiol 30:15–26

    Google Scholar 

  • Borg TK, Bell RA, Picard DJ (1973) Ultrastructure of neurosecretory cells in the frontal ganglion of the tobacco hornwormManduca sexta (L). Tissue Cell 5:259–267

    PubMed  Google Scholar 

  • Callec JJ (1974) Synaptic transmission in the central nervous system of insects. In: Treherne JE (ed) Insect neurobiology. Elsevier, Amsterdam, pp 119–185

    Google Scholar 

  • Christensen TA, Waldrop BR, Hildebrand JG (1985) GABA-mediated inhibition in the antennal lobes of the mothManduca sexta. Soc Neurosci Abstr 11:163

    Google Scholar 

  • Curtis DR, Johnston GAR (1974) Amino acid transmitters in the mammalian central nervous system. Ergebn Physiol 69:97–188

    PubMed  Google Scholar 

  • DeVoe R (1980) Movement sensitivities of cells in the fly's medulla. J Comp Physiol A 138:93–119

    Google Scholar 

  • Duve H, Thorpe A (1984a) Immunocytochemical mapping of gastrin/CCK-like peptides in the neuroendocrine system of the blowflyCalliphora vormitoria (Diptera). Cell Tissue Res 237:309–320

    PubMed  Google Scholar 

  • Duve H, Thorpe A (1984b) Comparative aspects of insect-vertebrate neurohormones. In: Bořkovec AB, Kelly TJ (eds) Insect neurochemistry and neurophysiology. Plenum, New York, pp 171–196

    Google Scholar 

  • El-Salhy M, Falkmer S, Kramer KJ, Speirs RD (1983) Immunohistochemical investigations of neuropeptides in the brain, corpora cardiaca, and corpora allata of an adult lepidopteran insect,Manduca sexta L. Gen Comp Endocrinol 54:85–88

    Google Scholar 

  • El-Salhy M, Falkmer S, Kramer KJ, Speirs RD (1984) Immunocytochemical evidence for the occurrence of insulin in the frontal ganglion of a lepidopteran insect, the tobacco hormworm moth,Manduca sexta L. Gen Comp Endocrinol 54:85–88

    PubMed  Google Scholar 

  • Erber J (1982) Electrophysiological analysis of central neurons in the bee and correlations with behavior. In: Breed MD, Michener CD, Evans HE (eds) The biology of social insects. Westview, Boulder, pp 343–346

    Google Scholar 

  • Erber J, Masuhr T, Menzel R (1980) Localization of short-term memory in the brain of the beeApis mellifera. Physiol Entomol 5:343–358

    Google Scholar 

  • Erber J, Homberg U, Gronenberg W (1987) The functional roles of the mushroom bodies in insects. In: Gupta AP (ed) Arthropod brain: its evolution, development, structure and functions. Wiley, New York (in press)

    Google Scholar 

  • Gerschenfeld HM (1973) Chemical transmission in invertebrate central nervous system and neuromuscular junctions. Physiol Rev 53:1–118

    PubMed  Google Scholar 

  • Goll W (1967) Strukturuntersuchungen am Gehirn vonFormica. Z Morphol Ökol Tiere 59:143–210

    Google Scholar 

  • Graham D (1985) Pattern and control of walking in insects. Adv Insect Physiol 18:31–132

    Google Scholar 

  • Goodman L, Mobbs P, Guy R (1982) Descending neurons in the brain and thorax of the honeybee. In: Breed MD, Michener CD, Evans HE (eds) The biology of social insects. Westview, Boulder, p 396

    Google Scholar 

  • Gronenberg W (1984) Das Protocerebrum der Honigbiene im Bereich des Pilzkörpers — eine neurophysiologisch-anatomische Charakterisierung. PhD Dissertation, Berlin

  • Harrow ID, Hildebrand JG (1982) Synaptic interactions in the olfactory lobe of the mothManduca sexta. Soc Neurosci Abstr 8:528

    Google Scholar 

  • Hausen K (1984) The lobula complex of the fly: structure, function and significance in visual behaviour. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York, pp 523–560

    Google Scholar 

  • Heisenberg M, Borst A, Wagner S, Byers D (1985)Drosophila mushroom body mutants are deficient in olfactory learning. J Neurogenet 2:1–30

    PubMed  Google Scholar 

  • Hertel H (1980) Chromatic properties of identified interneurons in the optic lobes of the bee. J Comp Physiol 137:215–231

    Google Scholar 

  • Homberg U (1982) Das mediane Protocerebrum der Honigbiene (Apis mellifica) im Bereich des Zentralkörpers: Physiologische und morphologische Charakterisierung. PhD Dissertation, Berlin

  • Homberg U (1984) Processing of antennal information in extrinsic mushroom body neurons of the bee brain. J Comp Physiol A 154:825–836

    Google Scholar 

  • Homberg U (1985) Interneurons of the central complex in the bee brain (Apis mellifica, L.) J Insect Physiol 31:251–264

    Google Scholar 

  • Homberg U (1987) Structure and functions of the central complex in insects. In: Gupta AP (ed) Arthropod brain: its evolution, development, structure and functions. Wiley, New York (in press)

    Google Scholar 

  • Homberg U, Erber J (1979) Response characteristics and identification of extrinsic mushroom body neurons of the bee. Z Naturforsch 34:612–615

    Google Scholar 

  • Homberg U, Hoskins SG, Hildebrand JG (1985) Immunocytochemical mapping of peptides in the brain and suboesophageal ganglion ofManduca sexta. Soc Neurosci Abstr 11:942

    Google Scholar 

  • Honegger H-W (1980) Receptive fields of sustained medulla neurons in crickets. J Comp Physiol 136:191–201

    Google Scholar 

  • Hoskins SG, Homberg U, Kingan TG, Hildebrand JG (1985) Neurochemical anatomy of the brain of the sphinx mothManduca sexta. In: Neuropharmacology and pesticide action (Neurotox 85). Soc Chem Industry, London, pp 84–87

    Google Scholar 

  • Hoskins SG, Homberg U, Kingan TG, Christensen TA, Hildebrand JG (1986) Immunocytochemistry of GABA in the antennal lobes of the sphinx mothManduca sexta. Cell Tissue Res 244:243–252

    PubMed  Google Scholar 

  • Huber F (1955) Sitz und Bedeutung nervöser Zentren für Instinkthandlungen beim Männchen vonGryllus campestris L. Z Tierpsychol 12:12–48

    Google Scholar 

  • Huber F (1960a) Experimentelle Untersuchungen zur nervösen Atmungsregulation der Orthopteren (Saltatoria, Gryllidae). Z Vgl Physiol 43:359–391

    Google Scholar 

  • Huber F (1960b) Untersuchungen über die Funktion des Zentralnervensystems und insbesondere des Gehirns bei der Fortbewegung und Lauterzeugung der Grillen. Z Vgl Physiol 44:60–132

    Google Scholar 

  • Huber F (1962) Lokalisation und Plastizität im Zentralnervensystem der Tiere. Zool Anz [Suppl] 26, Verh Dtsch Zool Ges 1962:200–267

    Google Scholar 

  • Huber F (1983) Neural correlates of orthopteran and cicada phonotaxis. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin Heidelberg New York, pp 108–135

    Google Scholar 

  • Kenyon FC (1896) The brain of the bee. A preliminary contribution to the morphology of the nervous system of the Arthropoda. J Comp Neurol 6:133–210

    Google Scholar 

  • Kien J, Menzel R (1977a) Chromatic properties of interneurons in the optic lobes of the bee. I. Broad band neurons. J Comp Physiol 113:17–34

    Google Scholar 

  • Kien J, Menzel R (1977b) Chromatic properties of interneurons in the optic lobes of the bee. II. Narrow band and colour opponent neurons. J Comp Physiol 113:35–53

    Google Scholar 

  • Kingan TG, Hildebrand JG (1985)γ-Aminobutyric acid in the central nervous system of metamorphosing and matureManduca sexta. Insect Biochem 15:667–675

    Google Scholar 

  • Klemm N (1983) Detection of serotonin-containing neurons in the insect central nervous system by antibodies to 5-HT. In: Strausfeld NJ (ed) Functional neuroanatomy. Springer, Berlin Heidelberg New York, pp 302–316

    Google Scholar 

  • Klemm N, Steinbusch WM, Sundler F (1984) Distribution of serotonin-containing neurons and their pathways in the suboesophageal ganglion of the cockroachPeriplaneta americana (L) as revealed by immunocytochemistry. J Comp Neurol 225:387–395

    PubMed  Google Scholar 

  • Laughlin SB (1981) Neural principles in the peripheral visual system of invertebrates. In: Autrum H, Jung R, Loewenstein WR, MacKay DM, Teuber HL (eds) Handbook of sensory physiology VII/6B. Springer, Berlin Heidelberg New York, pp 133–280

    Google Scholar 

  • Levy RA (1977) The role of GABA in primary afferent depolarization. Prog Neurobiol 9:211–267

    PubMed  Google Scholar 

  • Matsumoto SG, Hildebrand JG (1981) Olfactory mechanisms in the mothManduca sexta: Response characteristics and morphology of central neurons in the antennal lobes. Proc R Soc Lond [Biol] 213:249–277

    Google Scholar 

  • Maxwell GD, Tait JF, Hildebrand JG (1978) Regional synthesis of neurotransmitter candidates in the CNS of the mothManduca sexta. Comp Biochem Physiol 61C:109–119

    Google Scholar 

  • Maynard DM (1956) Electrical activity in cockroach cerebrum. Nature (Lond) 177:529

    Google Scholar 

  • Menzel R, Erber J, Masuhr T (1974) Learning and memory in the honeybee. In: Barton-Browne L (ed) Experimental analysis of insect behavior. Springer, Berlin Heidelberg New York, pp 195–217

    Google Scholar 

  • Meyer EP, Matute C, Streit P, Nässel DR (1986) Insect optic lobe neurons identifiable with monoclonal antibodies to GABA. Histochemistry 84:207–216

    PubMed  Google Scholar 

  • Mobbs PG (1982) The brain of the honeybeeApis mellifera. I. The connections and spatial organisation of the mushroom bodies. Phil Trans R Soc Lond [Biol] 298:309–354

    Google Scholar 

  • Nässel DR, Meyer EP, Klemm N (1985) Mapping and ultrastructure of serotonin-immunoreactive neurons in the optic lobes of three insect species. J Comp Neurol 232:190–204

    PubMed  Google Scholar 

  • O'Shea M, Evans PD (1979) Potentiation of neuromuscular transmission by an octopaminergic neuron in the locust. J Exp Biol 79:169–190

    Google Scholar 

  • Pearson L (1971) The corpora pedunculata ofSphinx L. and other Lepidoptera, an anatomical study. Phil Trans R Soc Lond [Biol] 259:477–752

    Google Scholar 

  • Pierantoni R (1965) A look into the cock-pit of the fly. The architecture of the lobula plate. Cell Tissue Res 171:101–122

    Google Scholar 

  • Roberts E, Chase TN, Tower DB (1976) GABA in nervous function. Raven Press, New York

    Google Scholar 

  • Robertson RM, Pearson KG (1985) Neural networks controlling locomotion in insects. In: Selverston (ed) Model neural networks and behavior. Plenum, New York, pp 21–37

    Google Scholar 

  • Roeder KD (1937) The control of tonus and locomotor activity in the praying mantis (Mantis religiosa L.) J Exp Zool 76:353–374

    Google Scholar 

  • Riehle A (1981) Color opponent neurons of the honeybee in a heterochromatic flicker test. J Comp Physiol 142:81–88

    Google Scholar 

  • Rowell CHF, O'Shea M, Williams JLD (1977) The neuronal basis of a sensory analyser, the acridid movement detector system. IV. The preference for small field stimuli. J Exp Biol 68:157–185

    PubMed  Google Scholar 

  • Schäfer S, Bicker G (1986) Distribution of GABA-like immunore-activity in the brain of the honeybee. J Comp Neurol 246:287–300

    PubMed  Google Scholar 

  • Schildberger K (1983) Local interneurons associated with the mushroom bodies and the central body in the brain ofAcheta domesticus. Cell Tissue Res 230:573–586

    PubMed  Google Scholar 

  • Schildberger K (1984) Multimodal interneurons in the cricket brain: properties of identified extrinsic mushroom body cells. J Comp Physiol 154:71–79

    Google Scholar 

  • Schürmann F-W (1974) Bemerkungen zur Funktion der Corpora pedunculata im Gehirn der Insekten aus morphologischer Sicht. Exp Brain Res 19:406–432

    PubMed  Google Scholar 

  • Schürmann F-W, Klemm N (1984) Serotonin-immunoreactive neurons in the brain of the honeybee. J Comp Neurol 225:570–580

    PubMed  Google Scholar 

  • Simmonds MA (1984) Physiological and pharmacological characterization of the actions of GABA. In: Bowery NG (ed) Actions and interactions of GABA and benzodiazepines. Raven Press, New York, pp 27–41

    Google Scholar 

  • Steiger U (1967) Über den Feinbau des Neuropils im Corpus pedunculatum der Waldameise. Z Zellforsch 81:511–536

    PubMed  Google Scholar 

  • Sternberger LA (1979) Immunocytochemistry. Wiley, New York

    Google Scholar 

  • Storm-Mathisen J, Leknes AK, Bore AT, Vaaland JL, Edminson P, Haug FMS, Ottersen OP (1983) First visualization of glutamate and GABA in neurons by immunocytochemistry. Nature (Lond) 301:517–520

    Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin

    Google Scholar 

  • Strausfeld NJ (1984) Functional neuroanatomy of the blowfly's visual system. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York, pp 483–522

    Google Scholar 

  • Strausfeld NJ, Blest AD (1970) Golgi studies on insects. Part I. The optic lobes of Lepidoptera. Phil Trans R Soc Lond [Biol] 258:81–134

    Google Scholar 

  • Strausfeld NJ, Nässel DR (1981) Neuroarchitecture serving compound eyes. In: Autrum H, Jung R, Loewenstein WR, MacKay DM, Teuber HL (eds) Handbook of sensory physiology VII/6B Vision in invertebrates. Springer, Berlin Heidelberg New York, pp 1–132

    Google Scholar 

  • Swihart SL (1968) Single unit activity in the visual pathway of the butterflyHeliconius erato. J Insect Physiol 14:1589–1601

    Google Scholar 

  • Usherwood PNR (1978) Amino acids as neurotransmitters. Adv Comp Physiol Biochem 7:227–309

    PubMed  Google Scholar 

  • Usherwood PNR, Grundfest H (1965) Peripheral inhibition in skeletal muscle of insects. J Neurophysiol 28:497–518

    PubMed  Google Scholar 

  • Wadepuhl M (1983) Control of grasshopper singing behavior by the brain: responses to electrical stimulation. Z Tierpsychol 63:173–200

    Google Scholar 

  • Williams JLD (1972) Some observations on the neuronal organisation of the supra-oesophageal ganglion inSchistocerca gregaria Forskål with particular reference to the central complex. PhD Thesis, University of Wales

  • Williams JLD (1975) Anatomical studies of the insect central nervous system: A ground-plan of the midbrain and an introduction to the central complex in the locust,Schistocerca gregaria (Orthoptera). J Zool (Lond) 167:67–86

    Google Scholar 

  • Wilson JA, Phillips CE, Adams ME, Huber F (1982) Structural comparison of a homologous neuron in gryllid and acridid insects. J Neurobiol 13:459–467

    PubMed  Google Scholar 

  • Witthöft W (1967) Absolute Zahl und Verteilung der Zellen im Hirn der Honigbiene. Z Morphol Tiere 61:160–184

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Homberg, U., Kingan, T.G. & Hildebrand, J.G. Immunocytochemistry of GABA in the brain and suboesophageal ganglion ofManduca sexta . Cell Tissue Res. 248, 1–24 (1987). https://doi.org/10.1007/BF01239957

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01239957

Key words