Abstract
For contouring very large data sets, such as those arising from 3-D finite element computations, for instance, or in numerical cartography, a computer program based on dual kriging interpolation was developed at École Polytechnique for the Castor project (a multidisciplinary research and development work in computational software for hydroelectric projects). The dual kriging technique presented here simplifies considerably the handling of interpolated data and is especially useful for 3-D applications. It also containsspline interpolation as a particular case and theleast squares method as a limit case. In order to minimize the computational effort, several original features have been incorporated in this program: (1) the concept ofdistance of influence was introduced to allow the algorithm, when evaluating the interpolation value at a given location, to discard data points that are situated too far apart; (2)arbitrary geometric domains are decomposed into simpler regions, inside which the requested contours are drawn directly by scanning vertical slices from left to right, instead of building each contour line sequentially as in direct contouring; (3) contour lines may also be stored in arandom access database (this last feature was added to enable the automatic assembly of isovalue surfaces in 3-D applications such as stress analysis); and (4) contours can be smoothed by interpolating separately the sequences ofX andY coordinates for each contour line. This process, calledparametric kriging, permits the efficient compression of the number of data points necessary to record contours.
Similar content being viewed by others
References
Davis M.; David, M. (1978) Automatic kriging and contouring in the presence of trends (Universal kriging made simple). Journal of Canadian Petroleum Technology, 17, 1.
Sabin, M.A. (1985) Contouring — the state of the art. NATO ASI Series, Vol. F17, Fundamental Algorithms for Computer Graphics (Earnshaw, R.A., Editor), Springer, Berlin
Marche, C.; Lessard, G.; Lemaire, S.C.; Bouchard, B. (1990) Rupture de barrage et cartographie des inondations, une analyse assistée par ordinateur. Canadian Journal of Civil Engineering, 17, 2, 218–225
Poirier, C.; Tinawi, R. (1991) Finite element stress tensor field interpolation and manipulation using 3D dual kriging. Computer & Structures, 40, 2, 211–225
Wild, E. (1980) Interpolation with weight-functions: a general interpolation method. Proc. 14 ISP-Cong., Commission III, Hamburg
Ebner, H.; Reiss, P. (1978) Height interpolation by the method of finite elements. Symposium of Commission III, International Society for Photogrammetry, Moscow, USSR, Institut für Angewandte Geodäsie, Frankfurt
Ebner, H.; Reiss, P. (1981) Experiences with height interpolation by finite elements. ASP-ACSM Fall Technical Meeting, San Francisco, Honolulu
Satterfield, S.G.; Rogers, D.F. (1985) A procedure for generating contour lines from a B-spline surface. Frontiers in Computer Graphics. Proc. Computer Graphics Tokyo '84 (Kunii, T.L., Editor). Springer, New York
Heap, B.R. (1972) Algorithms for the production of contour maps over an irregular triangular mesh. Report NAC 10, National Physical Laboratory
Laslett, G.M.; McBratney, A.B.; Pahl, P.J.; Hutchinson, M.F. (1987) Comparison of several spatial prediction methods for soil pH. Journal of Soil Science, 38, 325–341
Akima, H. (1978) A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points. ACM Transactions on Mathematical Software, 4, 2, 148–159
Sibson, R. (1981) A brief description of natural neighbor interpolation. Interpreting Multivariate Data (Barnett, V., Editor). Wiley, New York, 21–36
Hardy, R.L. (1971) Multiquadric equations of topography and other irregular surfaces. Journal of Geophysical Research, 76, 1905–1915
Clough, R.W.; Tocher, J.L. (1965) Finite element stiffness matrices for analysis of plates in bending. Proceedings Conf. Matrix Methods in Structural Mechanics, Air Force Institute of Technology, Wright-Patterson, A.F.B., OH
Allam, M.M. (1978) DTM's application in topographic mapping. Proceedings of the ASP/DTM Symposium, St-Louis, MO
Duchon, J. (1976) Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. RAIRO, Anal. Numer., 10, 5–12
Matheron, G. (1973) The intrinsic random functions and their applications. Adv. Appl. Prob., 5, 439–468
Krige, D.G. (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J. Chem. Metall. Min. Soc. S. Afr., 52, 119–139
Olea, R.A. (1974) Optimal contour mapping using universal kriging. Journal of Geophysical Research, 79, 695–702
Dowd, P.A. (1985) A review of geostatistical techniques for contouring. NATO ASI Series, Vol. F17, Fundamental Algorithms for Computer Graphics (Earnshaw, R.A., Editor). Springer, Berlin
Davis, M.W.; Culhane, P.G. (1984) Contouring very large datasets using kriging. Geostatistics for Natural Resouces Characterization, Part 2 (Verly, G. et al., Editors). Reidel, Dordrecht, The Netherlands, 599–619
Galli, A.; Murillo, E.; Thomann, J. (1984) Dual kriging — its properties and it uses in direct contouring. Geostatistics for Natural Resources Characterization, Part 2 (Verlg, G. et al., Editors). Reidel, Dordrecht, The Netherlands, 621–634
Trochu, F. (1988) Module CONTOUR pour tracer des lignes isovaleurs-Guide de l'usager. Projet Castor, École Polytechnique, Génie Civil, Montréal
Gilbert, R.; Carrier, R.; Benoit, C.; Soulié, M.; Schiettekatte, J. (1990) Applications of dual kriging in human factors engineering. Advances in Industrial Ergonomics and Safety II (Biman Das, Editor). Taylor & Francis, London
Matheron, G. (1980) Splines et krigeage: leur équivalence formelle. Rapport N-667, Centre de Géostatistique, École des Mines de Paris
Trochu, F. (1987) Fonctions de krigeage-Guide de l'usager. Projet Castor, École Polytechnique, Génie Civil, Montréal
Trochu, F. (1992) A new domain decomposition algorithm for a contouring program [in preparation]
Porier, C. (1990) Interpolation et manipulation de champs de contraintes tridimensionnels par krigeage dual. Thèse de Doctorat, Génie Civil, École Polytechnique, Montréal
Earnshaw, R.A. (1985) A review of curve drawing algorithms. NATO ASI Series, Vol. F17, Fundamental Algorithms for Computer Graphics (Earnshaw, R.A., Editor). Springer, Berlin
Trochu, F. (1987) Fonctions de krigeage 1D-Résultats graphiques. Projet Castor, École Polytechnique, Génie Civil, Montréal
Brodlic, K. W. (1985) Methods for drawing curves. NATO ASI Series, Vol. F17, Fundamental Algorithms for Computer Graphics (Earnshaw, R.A., Editor). Springer, Berlin
Trochu, F. (1988) Fonctions de krigeage 2D avec dérivées et lignes de discontinuité. Projet Castor, École Polytechnique, Génie Civil, Montréal
Trochu, F. (1990) Analyse géostatistique par éléments finis aléatoires et applications en hydrogéologie. Thèse de Doctorat, Départment de Génie Civil, École Polytechnique de Montréal
Journel, A. G.; Huijbregts, Ch.J. (1978) Mining Geostatistics. Academic, New York
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Trochu, F. A contouring program based on dual kriging interpolation. Engineering with Computers 9, 160–177 (1993). https://doi.org/10.1007/BF01206346
Issue Date:
DOI: https://doi.org/10.1007/BF01206346