[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A contouring program based on dual kriging interpolation

  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

For contouring very large data sets, such as those arising from 3-D finite element computations, for instance, or in numerical cartography, a computer program based on dual kriging interpolation was developed at École Polytechnique for the Castor project (a multidisciplinary research and development work in computational software for hydroelectric projects). The dual kriging technique presented here simplifies considerably the handling of interpolated data and is especially useful for 3-D applications. It also containsspline interpolation as a particular case and theleast squares method as a limit case. In order to minimize the computational effort, several original features have been incorporated in this program: (1) the concept ofdistance of influence was introduced to allow the algorithm, when evaluating the interpolation value at a given location, to discard data points that are situated too far apart; (2)arbitrary geometric domains are decomposed into simpler regions, inside which the requested contours are drawn directly by scanning vertical slices from left to right, instead of building each contour line sequentially as in direct contouring; (3) contour lines may also be stored in arandom access database (this last feature was added to enable the automatic assembly of isovalue surfaces in 3-D applications such as stress analysis); and (4) contours can be smoothed by interpolating separately the sequences ofX andY coordinates for each contour line. This process, calledparametric kriging, permits the efficient compression of the number of data points necessary to record contours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davis M.; David, M. (1978) Automatic kriging and contouring in the presence of trends (Universal kriging made simple). Journal of Canadian Petroleum Technology, 17, 1.

    Google Scholar 

  2. Sabin, M.A. (1985) Contouring — the state of the art. NATO ASI Series, Vol. F17, Fundamental Algorithms for Computer Graphics (Earnshaw, R.A., Editor), Springer, Berlin

    Google Scholar 

  3. Marche, C.; Lessard, G.; Lemaire, S.C.; Bouchard, B. (1990) Rupture de barrage et cartographie des inondations, une analyse assistée par ordinateur. Canadian Journal of Civil Engineering, 17, 2, 218–225

    Google Scholar 

  4. Poirier, C.; Tinawi, R. (1991) Finite element stress tensor field interpolation and manipulation using 3D dual kriging. Computer & Structures, 40, 2, 211–225

    Google Scholar 

  5. Wild, E. (1980) Interpolation with weight-functions: a general interpolation method. Proc. 14 ISP-Cong., Commission III, Hamburg

  6. Ebner, H.; Reiss, P. (1978) Height interpolation by the method of finite elements. Symposium of Commission III, International Society for Photogrammetry, Moscow, USSR, Institut für Angewandte Geodäsie, Frankfurt

    Google Scholar 

  7. Ebner, H.; Reiss, P. (1981) Experiences with height interpolation by finite elements. ASP-ACSM Fall Technical Meeting, San Francisco, Honolulu

  8. Satterfield, S.G.; Rogers, D.F. (1985) A procedure for generating contour lines from a B-spline surface. Frontiers in Computer Graphics. Proc. Computer Graphics Tokyo '84 (Kunii, T.L., Editor). Springer, New York

    Google Scholar 

  9. Heap, B.R. (1972) Algorithms for the production of contour maps over an irregular triangular mesh. Report NAC 10, National Physical Laboratory

  10. Laslett, G.M.; McBratney, A.B.; Pahl, P.J.; Hutchinson, M.F. (1987) Comparison of several spatial prediction methods for soil pH. Journal of Soil Science, 38, 325–341

    Google Scholar 

  11. Akima, H. (1978) A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points. ACM Transactions on Mathematical Software, 4, 2, 148–159

    Google Scholar 

  12. Sibson, R. (1981) A brief description of natural neighbor interpolation. Interpreting Multivariate Data (Barnett, V., Editor). Wiley, New York, 21–36

    Google Scholar 

  13. Hardy, R.L. (1971) Multiquadric equations of topography and other irregular surfaces. Journal of Geophysical Research, 76, 1905–1915

    Google Scholar 

  14. Clough, R.W.; Tocher, J.L. (1965) Finite element stiffness matrices for analysis of plates in bending. Proceedings Conf. Matrix Methods in Structural Mechanics, Air Force Institute of Technology, Wright-Patterson, A.F.B., OH

  15. Allam, M.M. (1978) DTM's application in topographic mapping. Proceedings of the ASP/DTM Symposium, St-Louis, MO

  16. Duchon, J. (1976) Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. RAIRO, Anal. Numer., 10, 5–12

    Google Scholar 

  17. Matheron, G. (1973) The intrinsic random functions and their applications. Adv. Appl. Prob., 5, 439–468

    Google Scholar 

  18. Krige, D.G. (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J. Chem. Metall. Min. Soc. S. Afr., 52, 119–139

    Google Scholar 

  19. Olea, R.A. (1974) Optimal contour mapping using universal kriging. Journal of Geophysical Research, 79, 695–702

    Google Scholar 

  20. Dowd, P.A. (1985) A review of geostatistical techniques for contouring. NATO ASI Series, Vol. F17, Fundamental Algorithms for Computer Graphics (Earnshaw, R.A., Editor). Springer, Berlin

    Google Scholar 

  21. Davis, M.W.; Culhane, P.G. (1984) Contouring very large datasets using kriging. Geostatistics for Natural Resouces Characterization, Part 2 (Verly, G. et al., Editors). Reidel, Dordrecht, The Netherlands, 599–619

    Google Scholar 

  22. Galli, A.; Murillo, E.; Thomann, J. (1984) Dual kriging — its properties and it uses in direct contouring. Geostatistics for Natural Resources Characterization, Part 2 (Verlg, G. et al., Editors). Reidel, Dordrecht, The Netherlands, 621–634

    Google Scholar 

  23. Trochu, F. (1988) Module CONTOUR pour tracer des lignes isovaleurs-Guide de l'usager. Projet Castor, École Polytechnique, Génie Civil, Montréal

    Google Scholar 

  24. Gilbert, R.; Carrier, R.; Benoit, C.; Soulié, M.; Schiettekatte, J. (1990) Applications of dual kriging in human factors engineering. Advances in Industrial Ergonomics and Safety II (Biman Das, Editor). Taylor & Francis, London

    Google Scholar 

  25. Matheron, G. (1980) Splines et krigeage: leur équivalence formelle. Rapport N-667, Centre de Géostatistique, École des Mines de Paris

  26. Trochu, F. (1987) Fonctions de krigeage-Guide de l'usager. Projet Castor, École Polytechnique, Génie Civil, Montréal

    Google Scholar 

  27. Trochu, F. (1992) A new domain decomposition algorithm for a contouring program [in preparation]

  28. Porier, C. (1990) Interpolation et manipulation de champs de contraintes tridimensionnels par krigeage dual. Thèse de Doctorat, Génie Civil, École Polytechnique, Montréal

    Google Scholar 

  29. Earnshaw, R.A. (1985) A review of curve drawing algorithms. NATO ASI Series, Vol. F17, Fundamental Algorithms for Computer Graphics (Earnshaw, R.A., Editor). Springer, Berlin

    Google Scholar 

  30. Trochu, F. (1987) Fonctions de krigeage 1D-Résultats graphiques. Projet Castor, École Polytechnique, Génie Civil, Montréal

    Google Scholar 

  31. Brodlic, K. W. (1985) Methods for drawing curves. NATO ASI Series, Vol. F17, Fundamental Algorithms for Computer Graphics (Earnshaw, R.A., Editor). Springer, Berlin

    Google Scholar 

  32. Trochu, F. (1988) Fonctions de krigeage 2D avec dérivées et lignes de discontinuité. Projet Castor, École Polytechnique, Génie Civil, Montréal

    Google Scholar 

  33. Trochu, F. (1990) Analyse géostatistique par éléments finis aléatoires et applications en hydrogéologie. Thèse de Doctorat, Départment de Génie Civil, École Polytechnique de Montréal

  34. Journel, A. G.; Huijbregts, Ch.J. (1978) Mining Geostatistics. Academic, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trochu, F. A contouring program based on dual kriging interpolation. Engineering with Computers 9, 160–177 (1993). https://doi.org/10.1007/BF01206346

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01206346

Keywords

Navigation