Abstract
Asynchronous automata were introduced by W. Zielonka as an algebraic model of distributed systems, showing that the class of trace languages recognizable by automata over free partially commutative monoids coincides with the class of trace languages recognizable by deterministic asynchronous automata. In this paper we extend the notion of asynchronous automata to the probabilistic case. Our main result is a nontrivial generalization to Zielonka's theorem: we prove that the sets of behaviors of probabilistic automata and of probabilistic asynchronous automata coincide in the case of concurrent alphabets with acyclic dependency graphs.
Similar content being viewed by others
References
A. Arnold. An extension of the notions of traces and of asynchronous automata.RAIRO Inform. Théor., 25:355–393, 1991.
M. Anselmo and A. Bertoni. Two-way probabilistic automata and rational power series.Theoretical Computer Science-Proceedings of the Fourth Italian Conference, pp. 9–23. World Scientific, Singapore, 1992.
IJ. J. Aalbersberg and G. Rozenberg. Theory of traces.Theoret. Comput. Sci., 60:1–82, 1988.
A. Bertoni, G. Mauri, and N. Sabadini. Concurrency and commutativity. Technical Report, University of Milan, 1982. Presented at the 3rd European Workshop on Applications and Theory of Petri Nets, Varenna, 1982.
A. Bertoni, G. Mauri, and N. Sabadini. Membership problem for regular and context-free trace languages.Inform. and Comput., 82:135–150, 1989.
D. Bruschi, G. Pighizzini, and N. Sabadini. On the existence of minimum asynchronous automata and on the equivalence problem for unambiguous regular trace languages.Inform. and Comput., 108:262–285, 1994.
P. Cartier and M. Foata.Problèmes combinatorics de commutation et rearrangements. Lecture Notes in Mathematics, Vol. 85. Springer-Verlag, Berlin, 1969.
R. Cori and Y. Mètivier. Approximation of a trace, asynchronous automata, and the ordering of events in a distributed system.Proc. 15th ICALP, pp. 147–161. Lecture Notes in Computer Science, Vol. 317. Springer-Verlag, Berlin, 1988.
V. Diekert.Combinatorics on Traces. Lecture Notes in Computer Science, Vol. 454. Springer-Verlag, Berlin, 1990.
V. Diekert and A. Muscholl. Deterministic asynchronous automata for infinite traces.Proc. 10th STACS, pp. 617–628. Lecture Notes in Computer Science, Vol. 665. Springer-Verlag, Berlin, 1993.
P. Gastin and A. Petit. Asynchronous automata for infinite traces.Proc. 19th ICALP, pp. 583–594. Lecture Notes in Computer Science, Vol. 623. Springer-Verlag, Berlin, 1992.
J. Kaneps and R. Freivalds. Running time to recognize nonregular languages by two-way probabilistic automata.Proc. ICALP 91, pp. 174–185. Lecture Notes in Computer Science, Vol. 510. Springer-Verlag, Berlin, 1991.
A. Mazurkiewicz. Concurrent program schemes and their interpretations. Technical Report DAIMI Rep. PB-78, Aarhus University, 1977.
A. Mazurkiewicz. Trace theory. InAdvances in Petri Nets 1986 (W. Brauer, W. Reisig, and G. Rosenberg, eds.), pp. 279–324. Lecture Notes in Computer Science, Vol. 255. Springer-Verlag, Berlin, 1986.
Y. Mètivier. An algorithm for computing asynchronous automata in the case of acyclic noncommutation graphs.Proc. 14th ICALP, pp. 226–236. Lecture Notes in Computer Science, Vol. 267. Springer-Verlag, Berlin, 1987.
A. Paz.Introduction to Probabilistic Automata. Academic Press, New York, 1971.
D. Perrin. Partial commutations.Proc. 16th ICALP, pp. 637–651. Lecture Notes in Computer Science, Vol. 372. Springer-Verlag, Berlin, 1989.
M. O. Rabin. Probabilistic automata.Inform. and Control, 6:230–245, 1963. Also in E. F. Moore.Sequential Machines. Addison-Wesley, Reading, MA, 1964.
A. Salomaa. Onm-adic probabilistic automata.Inform. and Control, 10:215–219, 1967.
W. Zielonka. Notes on finite asynchronous automata.RAIRO Inform. Theor., 21:99–135, 1987.
W. Zielonka. Asynchronous automata.Proceedings of the Workshop: Free Partially Commutative Monoids, pp. 183–197. Institut für Informatic, Technische Universität, München, TUM-I9002, 1990.
Author information
Authors and Affiliations
Additional information
This research has been supported by European Projects EBRA Nos. 3148 (DEMON), 3166 (ASMICS), and 6317 (ASMICS2), by MURST 40%, and by the CNR Project “Modelli di Computazione Parallela.”
Rights and permissions
About this article
Cite this article
Jesi, S., Pighizzini, G. & Sabadini, N. Probabilistic asynchronous automata. Math. Systems Theory 29, 5–31 (1996). https://doi.org/10.1007/BF01201811
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF01201811