Abstract
We present a technique for dynamically maintaining a collection of arithmetic expressions represented by binary trees (whose leaves are variables and whose internal nodes are operators). A query operation asks for the value of an expression (associated with the root of a tree). Update operations include changing the value of a variable and combining or decomposing expressions by linking or cutting the corresponding trees. Our dynamic data structure uses linear space and supports queries and updates in logarithmic time. An important application is the dynamic maintenance of maximum flow and shortest path in series-parallel digraphs under a sequence of vertex and edge insertions, series and parallel compositions, and their respective inverses. Queries include reporting the maximum flow or shortestst-path in a series-parallel subgraph.
Similar content being viewed by others
References
F. N. Afrati, D. Q. Goldin, and P. C. Kanellakis. Efficient Parallelism for Structured Data: Directed Reachability in S-P Dags, Technical Report CS-88-07, Department of Computer Science, Brown University, 1988.
B. Alpern, R. Hoover, B. Rosen, P. Sweeney, and F. K. Zadeck. Incremental evaluation of computational circuits,Proc. ACM-SIAM Symp. on Discrete Algorithms, 1990, pp. 32–42.
G. Ausiello, G. F. Italiano, A. Marchetti-Spaccamela, and U. Nanni. Incremental algorithms for minimal length paths,Proc. ACM-SIAM Symp. on Discrete Algorithms, 1990, pp. 12–21.
S. W. Bent, D. D. Sleator, and R. E. Tarjan. Biased search trees,SIAM J. Comput.,14 (1985), 545–568.
A. M. Berman, M. C. Paull, and B. G. Ryder. Proving relative lower bounds for incremental algorithms,Acta Inform.,27 (1990), 665–683.
R. P. Brent. The parallel evaluation of arithmetic expressions in logarithmic time, inComplexity of sequential and parallel numerical algorithms, Academic Press, New York, 1973, pp. 83–102.
R. P. Brent, The parallel evaluation of general arithmetic expressions,J. Assoc. Comput. Mach.,21 (1974), 201–206.
M. D. Carrol and B. G. Ryder. Incremental data flow analysis via dominator and attribute updates,Proc. 15th ACM Symp. on Principles of Programming Languages, 1988, pp. 274–284.
N. Deo and C. Pang. Shortest-path algorithms: taxonomy and annotations,Networks,14 (1984), 275–323.
G. Di Battista and R. Tamassia. Incremental planarity testing,Proc. 30th IEEE Symp. on Foundations of Computer Science, 1989, pp. 436–441.
D. Eppstein, G. F. Italiano, R. Tamassia, R. E. Tarjan, J. Westbrook, and M. Yung. Maintenance of a minimum spanning forest in a dynamic plane graph,J. Algorithms,13 (1992), 33–54.
S. Even and H. Gazit. Updating distances in dynamic graphs,Methods Oper. Res.,49 (1985), 371–387.
G. Gallo, M. Grigoriadis, and R. E. Tarjan. A fast parametric network flow algorithm,SIAM J. Comput.,18 (1989), 30–55.
A. V. Goldberg, E. Tardos, and R. E. Tarjan. Network Flow Algorithms, Technical Report STAN-CS-89-1252, Department of Computer Science, Stanford University, 1989.
M. T. Goodrich. Applying parallel processing techniques to classification problems in constructive solid geometry,Proc. ACM-SIAM Symp. on Discrete Algorithms, 1990, pp. 118–128.
D. Gusfield and C. Martel. A Fast Algorithm for the Generalized Parametric Minimum Cut Problem and Applications, Technical Report CSE-89-21, Department of Computer Science and Engineering, University of California, Davis, 1989.
G. F. Italiano, A. Marchetti-Spaccamela, and U. Nanni. Dynamic data structures for series-parallel graphs,Algorithms and Data Structures (Proc. WADS '89), Lecture Notes in Computer Science, Vol. 382, Springer-Verlag, Berlin, 1989, pp. 352–372.
R. M. Karp and V. Ramachandran. A survey of parallel algorithms for shared memory machines, inHandbook of Theoretical Computer Science, Vol. A, Elsevier/MIT Press, Amsterdam/ Cambridge, MA, 1990, pp. 869–942.
E. L. Lawler. Sequencing jobs to minimize total weighted completion time subject to precedence constraints,Ann. Discrete Math.,2 (1978), 75–90.
C. C. Lin and R. C. Chang. On the dynamic shortest path problem,Proc. International Workshop on Discrete Algorithms and Complexity, 1989, pp. 203–212.
W. Pugh and T. Teitelbaum. Incremental computation via function caching,Proc. 16th ACM Symp. on Principles of Programming Languages, 1989, pp. 315–328.
H. Rohnert. A dynamization of the all-pairs least cost problem,Proc. STACS '85, 1985, pp. 279–286.
D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees,J. Comput. Systems Sci.,24 (1983), 362–381.
P. M. Spira and A. Pan. On finding and updating spanning trees and shortest paths,SIAM J. Comput.,4 (1975), 373–380.
L. Stockmeyer. Optimal orientation of cells in slicing floorplan design,Inform. and Control,57 (1983), 91–101.
K. Takamizawa, T. Nishizeki, and N. Saito. Linear time computability of combinatorial problems on series-parallel graphs,J. Assoc. Comput. Mach.,29 (1982), 623–641.
R. Tamassia and F. P. Preparata. Dynamic maintenance of planar digraphs, with applications,Algorithmica,5 (1990), 509–527.
R. E. Tarjan.Data Structures and Network Algorithms, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 44, CBMS, Washington, DC, 1983.
J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition of series-parallel digraphs,SIAM J. Comput.,11 (1982), 298–313.
L. Weinberg. Linear graphs: Theorems, algorithms, and applications, inAspects of Network and System Theory, R. E. Kalman and N. DeClaris, eds., Holt, Rinehart, and Winston, New York, 1971.
Author information
Authors and Affiliations
Additional information
Communicated by T. Nishizeki.
Research supported in part by the National Science Foundation under Grant CCR-9007851, by the US Army Research Office under Grants DAAL03-91-G-0035 and DAAH04-93-0134, by the Office of Naval Research and the Defense Advanced Research Projects Agency under Contract N00014-91-J-4052, ARPA Order 8225, and by Cadre Technologies, Inc.
Rights and permissions
About this article
Cite this article
Cohen, R.F., Tamassia, R. Dynamic expression trees. Algorithmica 13, 245–265 (1995). https://doi.org/10.1007/BF01190506
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01190506