[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

L-systems and mutually recursive function systems

  • Published:
Acta Informatica Aims and scope Submit manuscript

Abstract

In this paper, we investigate the relationship between two different approaches to generate fractal images—L-systems and mutually recursive function systems. We consider two different ways in which L-systems have been used to generate images. The first is the well-known turtle geometry method, and the other is the vector interpretation method as used by Dekking. We show that a uniformly growing D0L-system can be simulated by an MRFS, and any D0L-system can be simulated by a control set produced by an iterative GSM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnsley, M.F.: Fractals everywhere. New York: Academic Press 1988

    Google Scholar 

  2. Barnsley, M.F., Jacquin, A., Reuter, L., Sloan, A.D.: Harnessing chaos for image synthesis. Computer Graphics, SIGGRAPH 1988 Conference Proceedings

  3. Barnsley, M.F., Elton, J.H., Hardin, D.P.: Recurrent iterated function systems. Construct. Approx.5, 3–31 (1989)

    Google Scholar 

  4. Barnsley, M.F., Devaney, R.L., Mandelbrot, B.B., Peitgen, H-O., De Saupe, Voss, R.F.: Science of fractal images. Berlin Heidelberg New York: Springer 1988

    Google Scholar 

  5. Culik K. II, Dube, S.: Affine automata and related techniques for generation of complex images, Theor. Comput. Sci. Preliminary version in Proceedings of MFCS'1990 (Lect. Notes Comput. Sci., vol. 452, pp. 224–231) Berlin Heidelberg New York: Springer 1990

    Google Scholar 

  6. Culik, K. II, Dube, S.: Rational and affine expressions for image Discrete Appl. Math. (to appear). Preliminary version: Automata-Theoretic Techniques for Image Generation and Compression, Proceedings of FST-TCS'1990 (Lect. Notes Comput. Sci., vol. 472, pp. 76–90). Berlin Heidelberg New York: Springer 1990

    Google Scholar 

  7. Culik, K. II, Dube, S.: Balancing order and chaos in image generation. Comput. and Graphics (to appear) Preliminary version in Proceedings of ICALP'91 (Lect. Notes Comput. Sci., vol. 510, pp. 600–614) Berlin Heidelberg New York: Springer 1991

    Google Scholar 

  8. Dekking, F.M.: Recurrent sets. Adv. Math.44, 78–104 (1982)

    Google Scholar 

  9. Dekking, F.M.: Recurrent sets: A fractal formalism. Report 82-32, Delft University of Technology, 1982

  10. Frijters, D., Lindenmayer, A.: A model for the growth and flowering ofAster novae-angliae on the basis of table (1, 0) L-systems. In: Rozenberg, G., Salomaa, A. (eds.) L-Systems. (Lect. Notes Comput. Sci., vol. 15, pp. 24–52) Berlin Heidelberg New York: Springer 1974

    Google Scholar 

  11. Giessmann, E.G.: Generation of fractal curves by generalizations of Lindemayer's L-systems. Proceedings of FRACTAL'90, Plymouth State College, New Hampshire 1990

  12. Hogeweg, P., Hesper, B.: A model study on biomorphological description. Pattern Recogn.6, 165–179 (1974)

    Google Scholar 

  13. Lindenmayer, A.: Mathematical models for cellular interaction in development, Parts I & II. J. Theor. Biol.18, 280–315 (1968)

    Google Scholar 

  14. Mandelbrot, B.: The fractal geometry of nature. San Francisco: W.H. Freeman 1982

    Google Scholar 

  15. Prusinkiewicz, P.: Applications of L-systems to computer imagery. In: Ehrig, H., Nagl, M., Rosenfeld, A., Rozenberg, G. (eds.) Graph grammars and their application to computer science. (Lect. Notes Comput. Sci., vol. 291, pp. 534–548) Berlin Heidelberg New York: Springer 1987

    Google Scholar 

  16. Prusinkiewicz, P.: Graphical applications of L-systems. Proceedings of graphics interface'86-Vision Interface'86, pp. 247–253 (1986)

  17. Prusinkiewicz, P., Lindenmayer, A.: The algorithmic beauty of plants. Berlin Heidelberg New York: Springer 1990

    Google Scholar 

  18. Shallit, J., Stolfi, J.: Two methods for generating fractals. Comput. and Graphics13, 185–191 (1989)

    Google Scholar 

  19. Smith, A.R.: Plants, fractals, and formal languages. Computer Graphics18, 1–10 (1984)

    Google Scholar 

  20. Szilard, A.L., Quinton, R.E.: An interpretation for D0L systems by computer graphics. Sci. Terrapin4, 8–13 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Culik, K., Dube, S. L-systems and mutually recursive function systems. Acta Informatica 30, 279–302 (1993). https://doi.org/10.1007/BF01179375

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01179375

Keywords

Navigation