Abstract
In this paper, we investigate the relationship between two different approaches to generate fractal images—L-systems and mutually recursive function systems. We consider two different ways in which L-systems have been used to generate images. The first is the well-known turtle geometry method, and the other is the vector interpretation method as used by Dekking. We show that a uniformly growing D0L-system can be simulated by an MRFS, and any D0L-system can be simulated by a control set produced by an iterative GSM.
Similar content being viewed by others
References
Barnsley, M.F.: Fractals everywhere. New York: Academic Press 1988
Barnsley, M.F., Jacquin, A., Reuter, L., Sloan, A.D.: Harnessing chaos for image synthesis. Computer Graphics, SIGGRAPH 1988 Conference Proceedings
Barnsley, M.F., Elton, J.H., Hardin, D.P.: Recurrent iterated function systems. Construct. Approx.5, 3–31 (1989)
Barnsley, M.F., Devaney, R.L., Mandelbrot, B.B., Peitgen, H-O., De Saupe, Voss, R.F.: Science of fractal images. Berlin Heidelberg New York: Springer 1988
Culik K. II, Dube, S.: Affine automata and related techniques for generation of complex images, Theor. Comput. Sci. Preliminary version in Proceedings of MFCS'1990 (Lect. Notes Comput. Sci., vol. 452, pp. 224–231) Berlin Heidelberg New York: Springer 1990
Culik, K. II, Dube, S.: Rational and affine expressions for image Discrete Appl. Math. (to appear). Preliminary version: Automata-Theoretic Techniques for Image Generation and Compression, Proceedings of FST-TCS'1990 (Lect. Notes Comput. Sci., vol. 472, pp. 76–90). Berlin Heidelberg New York: Springer 1990
Culik, K. II, Dube, S.: Balancing order and chaos in image generation. Comput. and Graphics (to appear) Preliminary version in Proceedings of ICALP'91 (Lect. Notes Comput. Sci., vol. 510, pp. 600–614) Berlin Heidelberg New York: Springer 1991
Dekking, F.M.: Recurrent sets. Adv. Math.44, 78–104 (1982)
Dekking, F.M.: Recurrent sets: A fractal formalism. Report 82-32, Delft University of Technology, 1982
Frijters, D., Lindenmayer, A.: A model for the growth and flowering ofAster novae-angliae on the basis of table (1, 0) L-systems. In: Rozenberg, G., Salomaa, A. (eds.) L-Systems. (Lect. Notes Comput. Sci., vol. 15, pp. 24–52) Berlin Heidelberg New York: Springer 1974
Giessmann, E.G.: Generation of fractal curves by generalizations of Lindemayer's L-systems. Proceedings of FRACTAL'90, Plymouth State College, New Hampshire 1990
Hogeweg, P., Hesper, B.: A model study on biomorphological description. Pattern Recogn.6, 165–179 (1974)
Lindenmayer, A.: Mathematical models for cellular interaction in development, Parts I & II. J. Theor. Biol.18, 280–315 (1968)
Mandelbrot, B.: The fractal geometry of nature. San Francisco: W.H. Freeman 1982
Prusinkiewicz, P.: Applications of L-systems to computer imagery. In: Ehrig, H., Nagl, M., Rosenfeld, A., Rozenberg, G. (eds.) Graph grammars and their application to computer science. (Lect. Notes Comput. Sci., vol. 291, pp. 534–548) Berlin Heidelberg New York: Springer 1987
Prusinkiewicz, P.: Graphical applications of L-systems. Proceedings of graphics interface'86-Vision Interface'86, pp. 247–253 (1986)
Prusinkiewicz, P., Lindenmayer, A.: The algorithmic beauty of plants. Berlin Heidelberg New York: Springer 1990
Shallit, J., Stolfi, J.: Two methods for generating fractals. Comput. and Graphics13, 185–191 (1989)
Smith, A.R.: Plants, fractals, and formal languages. Computer Graphics18, 1–10 (1984)
Szilard, A.L., Quinton, R.E.: An interpretation for D0L systems by computer graphics. Sci. Terrapin4, 8–13 (1979)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Culik, K., Dube, S. L-systems and mutually recursive function systems. Acta Informatica 30, 279–302 (1993). https://doi.org/10.1007/BF01179375
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01179375