[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Rare events in queueing systems—A survey

  • Invited Paper
  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

Several practical approaches have been used to estimate the probabilities of rare events occurring in queueing processes. Rare events of practical interest can be considered as large deviations for a fixed queueing process (such as level crossing by the waiting time, or the queue length) or as those for a limiting triangular scheme. This paper is a survey of the literature devoted to the regenerative analysis of rare events. Because of the importance of busy period parameters, rare events within a busy period are discussed. A number of small parameter theorems useful in rare events analysis are outlined, including singular states aggregation theorems. Simulation methods for rare events analysis and other numerical methods are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.M. Abramov, Some new applications of an asymptotic theorem on the time of first occurrence of a rare event in a regenerative process, Izv. Acad. Nauk Tadzhik. SSR. Otdel. Fiz.-Mat. Khim. i Geol. Nauk 1986, No. 4 (102), 29–33 (1987) MR: 89e: 60174 (in Russian. Tajiki summary).

    Google Scholar 

  2. O.M.E. Ali and M.F. Neuts, A queue with service times dependent on their order within the busy periods, Commun. Statist.-Stochast. Models 2 (1966) 67.

    Google Scholar 

  3. V.V. Anisimov, Switching process, Kibernetica 4 (1977) 111 (in Russian).

    Google Scholar 

  4. V.V. Anisimov, Limit theorems for switching process and their applications, Kibernetica 6 (1978) 108 (in Russian).

    Google Scholar 

  5. V.V. Anisimov and G.F. Zainutdinov, Limit distributions for the time of the first loss of a customer in controllable Markov queueing systems with priorities, Vestnik Kiev. Univ. Model. Opt. Slozhn., Syst. 4 (1985) 3; MR 90d: 60078 (in Russian).

    Google Scholar 

  6. V.V. Anisimov and Pushkin, Asymptotic estimates for reliability characteristics of a hierarchical Markov system, Cybern. Inst. Akad. Sci. Ukr. SSR, Kiev (1986) (in Russian).

    Google Scholar 

  7. S. Asmussen, Conjugate process and the simulation of ruin problems, Stochast. Proc. Appl. 20 (1985) 213.

    Google Scholar 

  8. S. Asmussen, Ladder heights and the Markov-modulatedM/G/1 queue, Stochast. Process. Appl. 37 (1991) 313–326.

    Google Scholar 

  9. S. Asmussen, Light traffic equivalence in single server queues, Ann. Appl. Prob. (Aug. 1992) 1.

  10. S. Asmussen, Queueing simulation in heavy traffic, Math. Oper. Res. 17 (1992) 84–111.

    Google Scholar 

  11. S. Asmussen,Applied Probability and Queues (Wiley, Chichester, 1987).

    Google Scholar 

  12. S. Asmussen, Phase-type representations in random walk and queueing problems, Ann. Prob. 20 (1992) 772–789.

    Google Scholar 

  13. S. Asmussen and S.G. Foss, Renovation, regeneration and coupling in multiple-server queues in continuous time,Proc. 3rd Finnish-Soviet Symp., Turku (1991) pp. 1–5.

  14. S. Asmussen, P.W. Glynn and H. Thorisson, Stationarity detection in the initial transient problem, ACM TOMACS 2 (1993).

  15. S. Asmussen and D. Perry, On cycle maxima, first passage problems and extreme value theory for queues, Commun. Statist.-Stochast. Models 8 (1992) 421–458.

    Google Scholar 

  16. S. Asmussen and H. Thorisson, Large deviation results for time-dependent queue length distributions, Commun. Statist-Stochast. Models 1 (1988) 99; MR 89e: 60182.

    Google Scholar 

  17. T.A. Azlarov, D.A. Atakuziyev and A.A. Djamirzayev, Summation scheme of random variables with geometrically distributed index,Predeln. teoremy dlya sluch. protses. (Fan, Tashkent, 1977) (in Russian).

    Google Scholar 

  18. F. Baccelli and P. Brémaud, Virtual customers in sensitivity and light traffic analysis via Campbell's formula for point processes, J. Appl. Probl. 20 (1991) 1–19.

    Google Scholar 

  19. G.P. Basharin, P.P. Bocharov and Ya.A. Kogan,Queueing Analysis in Computing Networks (Nauka, Moscow, 1989) (in Russian).

    Google Scholar 

  20. G.P. Basharin, P.P. Bocharov and S.S. Spesivov, On algorithmic support and software of analytic simulation methods for information computing systems and their components, Akad. Nauk SSSR. Nauchn. Soviet po Probleme Kibernetice, Moscow (1983) (in Russian).

    Google Scholar 

  21. Yu.K. Belyaev, Limit theorems for dissipative flows, Theory Prob. Appl. 8 (1963) 165 (in Russian).

    Google Scholar 

  22. R.E. Bernet, Modellierung reparierbarer Systeme durch Markoff- und semi-regenerative Prozesse, Thesis of doct. dissertation, Eidgenössische Technische Hochschule Zürich (1992).

  23. D.J. Bertsimas, I. Keilson, D. Nakazato and H. Zhang, Transient and busy period analysis of theGI/G/1 queue as a Hubert factorization problem, J. Appl. Prob. 28 (1991) 873.

    Google Scholar 

  24. A. Birolini, Semi-Markoff- und verwandte Prozesse, Thesis of doct. dissertation, Eidgenössische Technische Hochschule Zürich (1974).

  25. A. Birolini,On the Use of Stochastic Processes in Modelling Reliability Problems (Springer, Berlin/Heidelberg/New York/Tokyo, 1985).

    Google Scholar 

  26. A.A. Borovkov,Asymptotical Methods in Queueing Theory (Nauka, Moscow, 1980) (in Russian).

    Google Scholar 

  27. M. Brown, Error bounds for exponential approximations of geometric convolutions, Ann. Prob. 18 (1990) 1388.

    Google Scholar 

  28. M.L. Chaudhry and J.G.C. Templeton,A First Course in Bulk Queues, 2nd ed. (North-Holland, Amsterdam, 1983).

    Google Scholar 

  29. K. Cheng and Z.F. He, On the first failure time of a system in a randomly varying environment, in:Reliability Theory and Applications (Shonghai, Xian, Beijing, 1987) pp. 34–43, World Sci. Publ., Singapore, 1987; MR 88j: 60148.

    Google Scholar 

  30. J.W. Cohen,The Single Server Queue, 2nd ed. (North-Holland, Amsterdam, 1982).

    Google Scholar 

  31. R.B. Cooper,Introduction to Queueing Theory, 2nd ed. (North-Holland, New York/Oxford, 1981).

    Google Scholar 

  32. M.A. Crane and A.J. Lemoine,An Introduction to the Regenerative Method for Simulation Analysis, Lecture Notes in Control and Information Sciences 4 (Springer, New York/Heidelberg/Berlin, 1977).

    Google Scholar 

  33. H. Daduna, On the busy period in networks of queues: mean value analysis,11th Symp. on Operations Research (Darmstadt, 1986) pp. 177–184, Meth. Oper. Res. 57 (Athenäum/Hain/ Hanstein, Königstein/Ns., 1987); MR 88m: 60240.

  34. D. Daley and T. Rolsky, Light traffic approximations in queues, Math. Oper. Res. (1990).

  35. E.A. Danielyan and A.A. Geokchyan, Asymptotic analysis of systems with “fast” service, Izv. Akad. Nauk SSSR. Tekhn. Kibern. 6 (1976) 121 (in Russian).

    Google Scholar 

  36. A.A. Djamizzaev, Uniform bounds for the convergence of a sum of a random number of random variables to the exponential distribution, Universitatis Scientarum Budapestiensis, Sectio Mathematica, 21 (1978) 21–26.

    Google Scholar 

  37. R. De Dominicis and R. Manca, An algorithmic approach to nonhomogeneous semi-Markov processes, Commun. Statist. B — Simul. Comput. 13 (1984) 823; MR 87g: 6076a.

    Google Scholar 

  38. N.M. van Dijk, Perturbation theory for unbounded Markov reward process with applications to queueing, Adv. Appl. Prob. 20 (1988) 99.

    Google Scholar 

  39. N.M. van Dijk and M.L. Puterman, Perturbation theory for Markov reward process with applications to queueing systems, Adv. Appl. Prob. 20 (1988) 79.

    Google Scholar 

  40. R.L. Dobrushin, M.Ya. Kelbert, A.N. Rybko and Yu.M. Sukhov,Qualitative Methods of Queueing Network Theory, Inst. Problem Peredachi Inform. Akad. Nauk SSSR (Moscow, 1986) (in Russian).

    Google Scholar 

  41. A.M. Eikeboom and H.C. Tijms, Waiting time percentiles in the multiserverM x/G/C queue with batch arrivals, Prob. Eng. Inf. Sci. l (1987) 75.

    Google Scholar 

  42. S.P. Ellis, Second-order approximation to the characteristic function of certain point-process integrals, Adv. Appl. Prob. 19 (1987) 546.

    Google Scholar 

  43. S.G. Foss, The method of renovating events and its applications in queueing theory, in:Semi-Markov Models (Brussels, 1984) pp. 337–350, Plenum, New York/London, 1986; MR 88d: 60233.

    Google Scholar 

  44. P. Franken, D. König, U. Arndt and V. Schmidt,Queues and Point Processes (Akademie-Verlag/Wiley, Berlin/New York, 1981).

    Google Scholar 

  45. I.B. Gertsbakh, Asymptotic methods in reliability theory: a review, Adv. Appl. Prob. 16 (1984) 147.

    Google Scholar 

  46. S. Ghahramani, Finiteness of moments of partial busy periods forM/G/C queues, J. Appl. Prob. 23(1986)261.

    Google Scholar 

  47. S. Ghahramani, On remaining full busy periods ofGI/G/C queues and their relation to stationary point processes, J. Appl. Prob. 27 (1990) 232.

    Google Scholar 

  48. S. Ghahramani and R.W. Wolff, A new proof of finite moment conditions forGI/G/I busy periods, Queueing Syst. 4 (1989) 171; MR 90m: 60106.

    Google Scholar 

  49. V. Giurgiuciu,Elements of Probabilistic Analysis with Applications (editura Academiei, Bucuresti; Kluwer Academic, Dordrecht/Boston/London).

  50. P. Glasserman,Gradient Estimation via Infinitesimal Perturbation Analysis (Kluwer, 1991).

  51. P.W. Glynn and D.L. Iglehart, Simulation methods for queues: an overview, Queueing Syst. 3 (1988) 221; MR 87e: 60117.

    Google Scholar 

  52. B.V. Gnedenko and I.N. Kovalenko,Introduction to Queueing Theory, 2nd ed. (Birkhäuser, Boston/Basel/Berlin, 1989).

    Google Scholar 

  53. B.V. Gnedenko and D. König (eds.),Handbuch der Bedienungstheorie (Akademie-Verlag, Berlin, I-1983,II-1984).

  54. D.B. Gnedenko and A.D. Soloviev, A general model of redundancy with repair, Izv. Akad. Nauk SSSR. Tekhn. Kibern. 6 (1974) 113 (in Russian).

    Google Scholar 

  55. D.B. Gnedenko and A.D. Soloviev, Estimations of complex repairable systems reliability, Izv. Akad. Nauk SSSR. Tekhn. Kibern. 3 (1975) 121 (in Russian).

    Google Scholar 

  56. V.A. Gryshchenko, Approximation of the stream of demands lost by multichannel queueing system under conditions of rare losses, Avtoref. diss. kand. Siz.-mat. nauk, Inst. Math. Acad. Nauk Ukr SSR, Kiev (1981).

    Google Scholar 

  57. V.A. Gryshchenko and E.L. Danylenko, Approximation of the flow of failures of highly reliable inhomogeneous queueing systems, Analytic methods in reliability theory (in Russian), 40–45, iii, Akad, Nauk Ukrain. SSR, Inst. Mat. Kiev (1985); MR 88i: 60151.

  58. P. Hall, J.L. Teugels and A. Vanmarcke, The abscissa of convergence of the Laplace transform, J. Appl. Prob. 29 (1992) 353.

    Google Scholar 

  59. V.V. Ivanov,Computational Methods on Computers. A Handbook (Naukova Dumka, Kiev, 1986) (in Russian).

    Google Scholar 

  60. D. Jagerman, Approximations for waiting time inGI/G/1 systems, Queueing Syst. 2 (1987) 351; MR 89c: 60106.

    Google Scholar 

  61. M. Jain and G.C. Sharma, Some bounds on the mean queueing time based on busy period consideration, J. Maulana Azad College Tech. 18 (1985) 125; MR 87f: 60143.

    Google Scholar 

  62. S. Jolkov and V. Rykov, Generalized regenerative processes with imbedded regeneration periods and their applications, Math. Operationshforsch. Statist. Ser. Optimization 12 (1981) 575.

    Google Scholar 

  63. V.V. Kalashnikov, Regenerative queueing processes and their qualitative and quantitative analysis, Queueing Syst. 6 (1990) 113.

    Google Scholar 

  64. V.V. Kalashnikov, Analytical and simulation estimates of reliability for regenerative models, Syst. Anal. Mod. Simul. 6 (1989) 833–851.

    Google Scholar 

  65. V.V. Kalashnikov and S.T. Rachev,Mathematical Methods for Constructing Queueing Models, The Wadsworth & Brooks/Cole Operations Research Series, Pacific Grove, CA (1990) 431 pp.

  66. V.V. Kalashnikov, Deriving parameters of first failure time by semi-regenerative processes analysis. Problems of stochastic models stability, Moscow, VNIISI (1990) 21–31 (in Russian).

    Google Scholar 

  67. O. Kallenberg,Random Measures (Akademie-Verlag, Berlin; Academic Press, New York, 1976).

    Google Scholar 

  68. N.V. Kartashov, Strongly stable Markov chains, Problemy ustoichivosti stokhasticheskikh modeley, Trudy seminara, BNIISI (1981) 54–59 (in Russian).

  69. N.V. Kartashov, Operator methods in limit theorems for Markov processes, Prob. Theory Appl. 4 (1984) 792 (in Russian).

    Google Scholar 

  70. L. Kleinrock,Queueing Systems, Vol. 2:Computer Applications (Wiley, New York/London/ Sydney/Toronto, 1976).

    Google Scholar 

  71. D.G. Konstantinidis and A.D. Soloviev, Uniform estimate of reliability for a complex regenerated system with unlimited number of repair units, Moscow University Mathematics Bulletin 16, No. 3 (1991) 21.

    Google Scholar 

  72. V.S. Koroliuk, I.P. Penev and A.F. Turbin, An asymptotic expansion for the absorbing time of a Markov chain distribution, Kibernetica 4 (1973) 133 (in Russian).

    Google Scholar 

  73. V.S. Koroliuk and A.V. Svishchuk,Semi-Markovian Random Evolutions and Their Applications (Naukova Dumka, Kiev, 1993) (in Russian).

    Google Scholar 

  74. V.S. Koroliuk and A. Tadjiyev, Asymptotic behaviour of semi-Markov evolutions to absorption time, Primenen. Analit. Metodov v Veroyatn. Zadachakh, Inst. Mat. Akad. Nauk Ukr. SSR, Kiev (1986) (in Russian).

    Google Scholar 

  75. V.S. Koroliuk and A.F. Turbin,Semi-Markov Processes and Their Applications (Naukova Dumka, Kiev, 1976) (in Russian).

    Google Scholar 

  76. V.S. Koroliuk and A.F. Turbin,Mathematical Foundations of the Phase Aggregation of Complex Systems (Naukova Dumka, Kiev, 1978) (in Russian).

    Google Scholar 

  77. V.S. Koroliuk and A.F. Turbin, Methods of analytic estimation for reliability characteristics of repairable systems, Ser. “Znaniye” Ukr. SSR, Kiev (1983) (in Russian).

  78. I.N. Kovalenko, Some questions of complex systems reliability theory, Kibernetica na sludj. kommun. 2 (1964) 194 (Energia Publ., Moscow) (in Russian).

    Google Scholar 

  79. I.N. Kovalenko, On the class of limiting distributions for thinning streams of homogeneous events, Litovskii Matematicheskii Sbornik. 5, 4 (1965) 569 (in Russian).

    Google Scholar 

  80. I.N. Kovalenko,Rare Events Analysis in the Estimation of Systems Efficiency and Reliability (Sov. Radio Publ., Moscow, 1980) (in Russian).

    Google Scholar 

  81. I.N. Kovalenko,Probability Calculations and Optimization (Naukova Dumka, Kiev, 1989) (in Russian).

    Google Scholar 

  82. I.N. Kovalenko, N.Yu. Kuznetsov and V.M. Shurenkov,Random Processes. Reference Book (Naukova Dumka, Kiev, 1983) (in Russian).

    Google Scholar 

  83. V.M. Kurglov and Yu.V. Korolev,Limit Theorems for Random Sums (Moscow Univ. Publ., Moscow, 1990) (in Russian).

    Google Scholar 

  84. B.N. Kuznetsov, Semi-Markov processes with arbitrary set of states in problems of reliability analysis of complex repairable systems, Avtoref. diss. kand. fiz.-mat. nauk (Inst. Math. Acad. Sci. Ukr. SSR, Kiev, 1981) (in Russian).

    Google Scholar 

  85. N.Yu. Kuznetsov, A general approach to the estimation of a trouble-free operation probability of a structural complex systems by analytical and statistical method, Kibernetica 3 (1985) 86 (in Russian).

    Google Scholar 

  86. N.Yu. Kuznetsov, Accelerated simulation methods for non-stationary reliability characteristics of the complex systems (Cybern. Inst. Acad. Sci. Ukrain. SSR, Kiev, 1985) (in Russian).

    Google Scholar 

  87. N.Yu. Kuznetsov, Computation of the availability of repairable systems by analytical and statistical method, Kibernetica 5 (1985) 95 (in Russian).

    Google Scholar 

  88. I.Yu. Linnik, On the improvement of Monte-Carlo method convergence of queueing systems parameters estimation, Veroyatnost. Metody Resheniya Zad. Mat. Fiz. (Novosibirsk, 1971) (in Russian).

  89. I.Yu. Linnik, An improvement of Monte-Carlo method convergence in some queueing problems, Kibernetica 5 (1973) 129 (in Russian).

    Google Scholar 

  90. I.Yu. Linnik and L.P. Mironenko, The dummy step method in statistical simulation of incomplete access systems with failures, Izv. Akad. Nauk SSSR. Tekhn. Kibernet. 6 (1976) 102 (in Russian).

    Google Scholar 

  91. V.A. Malyshev and M.V. Menshikov, Ergodicity, continuity and analyticity of countable Markov chains, Trudy Moscow Matematicheskogo Obschestva 39 (1979) (in Russian).

  92. D.L. Minh, A variant of the conditional expectation variance reduction techniques and its application to the simulation of theG//G/1 queues, Manag. Sci. 35 (1989) 1334; MR 90m: 65020.

    Google Scholar 

  93. M. Miyazama, Approximation of the queue-length distribution of anM/GI/S queue by the basic equations, J. Appl. Prob. 23 (1986) 443; MR 87h: 60170.

    Google Scholar 

  94. E.V. Morozov, A renewal of multichannel queues, Dokl. Akad. Nauk BSSR 31, 2 (1987) 120 (in Russian).

    Google Scholar 

  95. V.A. Nagonenko and A.V. Pechinkin, A light load in a system with inverse order of serving and a probabilistic priority, Izv. Akad. Nauk SSSR Tekhn. Kibernet. 6 (1985) 82 [transi.: Sov. J. Comput. Systems Sci. 23 (1985) 51]; MR 87e: 60160.

    Google Scholar 

  96. A.N. Nakonechnyi, On the representation of systems' trouble-free operation probability as the mean from W-functional of a discontinuous Markov process, Kibernetica 5 (1985) 92 (in Russian).

    Google Scholar 

  97. I.C.W. van Ommeren, Exponential expansion for the tail of the waiting-time probability in the single-server queue with batch arrivals, Adv. Appl. Prob. 20 (1988) 880.

    Google Scholar 

  98. V.N. Ovchinnikov, Asymptotic behaviour of the time to first failure in a model of nonhomogeneous redundancy with fast repair, Izv. Akad. Nauk SSSR. Tekhn. Kibern. 2 (1976) 82 (in Russian).

    Google Scholar 

  99. V.N. Ovchinnikov, On asymptotic behaviour of the customer first loss time under service depending on a system state, Izv. Akad. Nauk SSSR. Tekhn. Kibern. 6 (1976) 114 (in Russian).

    Google Scholar 

  100. S. Parekh and T. Walrand, Quick simulation of excessive backlogs in networks of queues, in:Stochastic Differential Systems, Stochastic Control Theory and Their Applications (Minneapolis, MN, 1986) pp. 439–472 (Springer, New York/Berlin, 1988); MR 89c: 60109.

    Google Scholar 

  101. A.V. Pechinkin, The analysis of one-server systems with small load, Izv, Akad. Nauk SSSR. Tekhn. Kibernet. 3 (1984) 143 (in Russian) (transl.: Eng. Cybern. 22 (1984) 129–135).

    Google Scholar 

  102. N.U. Prabhu,Queues and Inventories (Wiley, New York, 1965).

    Google Scholar 

  103. S.G. Pushkin, Asymptotic analysis of Markov systems with mixing, Avtoref. diss, kand. fiz.- mat. nauk (Kiev State Univ., Kiev, 1986) (in Russian).

    Google Scholar 

  104. M.I. Reiman and B. Simon, Light traffic limits of sojorn time distributions in Markovian queueing networks, Commun. Statist. Stochast. Models 4 (1988) 191.

    Google Scholar 

  105. A. Reibman, R. Smith and K. Trivedi, Markov and Markov reward model transient analysis: an overview of numerical approaches, Eur. J. Oper. Res. 40 (1989) 257.

    Google Scholar 

  106. M.I. Reiman and B. Simon, Open queueing systems in light traffic, Math. Oper. Res. 14 (1989) 26.

    Google Scholar 

  107. A. Renyi, Poisson-folyamat egy jeuemzese (A characteristic of the Poisson stream), Proc. Math. Inst. Hungarian Acad. Sei. l (1956) 563.

    Google Scholar 

  108. R.Y. Rubinstein and A. Shapiro,Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization via the Score Function Method (Wiley, 1993).

  109. V.V. Rykov, Investigation of a general single-channel system by the method of regenerative processes. Part II. The main processes investigation at regeneration period, Izv. Akad. Nauk SSSR. Tekhn. Kibernet. 1 (1984) 126 (in Russian).

    Google Scholar 

  110. V.V. Rykov and M.A. Yastrebeneetskii, On regenerative processes with several types of regeneration points, Kibernetica 3 (1971) 82 (in Russian).

    Google Scholar 

  111. O. Sakhobov, Two-sided uniform bounds for queueing systems, Kibernetica (1989) No. 1, 112–113 (in Russian, English summary).

    Google Scholar 

  112. L. Seidl', Estimation of the moment of the regeneration period in a central closed system, Teor. Veroyatnost. i Primenen. 31 (1986) 358 (in Russian).

    Google Scholar 

  113. B.A. Sevastianov, Limit Poisson law in a scheme of dependent random variables, Theor. Prob. Appl. 17 (1972) 733–738 (in Russian).

    Google Scholar 

  114. G.S. Shedler, Regeneration and networks of queues, in:Applied Probability, A Series of the Applied Probability Trust (Springer, New York/Berlin, 1987).

    Google Scholar 

  115. I.G. Shanthikumar and U. Sumita, On the busy-period distributions ofM/G/1/Kqueues with state-dependent arrivals and FCFS/LCFS-P service disciplines. J. Appl. Prob. 22 (1985) 912; MR 87: 60091.

    Google Scholar 

  116. O.P. Sharma and B. Shobna, On the busy period of anM/M/1/N queue, J. Combin. Inform. System Sci. 11 (1986) 110; MR 89g: 602996.

    Google Scholar 

  117. O.P. Sharma and I. Dass, Transient analysis of anM/M/r machine interference model, Stochast. Anal. Appl. 6 (1988) 205113.

    Google Scholar 

  118. V.D. Shpak, Unbiased estimates for the solution of linear integral equation of the second kind and their applications to computing of semi-Markov systems reliability characteristics, Doklady Akad. Nauk Ukr. SSR. Ser A. 10 (1989) 81 (in Russian).

    Google Scholar 

  119. V.D. Shpak, Analytical-statistical estimates for time-dependent indexes of reliability and efficiency of semi-Markov systems, Kibernetika 3 (1991) (in Russian).

  120. V.D. Shpak, T.P. Kuzmenko and G.A. Marchuk, A package of programs for computation of reliability characteristics of systems with complex structure DISP, Inst. Kibern. Akad. Nauk Ukr. SSSR (1990).

  121. V.D. Shpak and G.A. Marchuk, Algorithmization of computation for characteristics of multiregime system with continuous and periodic serviceability control, Metody Issled, operatsii i teor. nadezh. Sybernet. Int. Acad. Sci. Ukr. SSR (Kiev, 1977).

  122. A.D. Soloviev, A redundancy with fast repair, Izv. Akad. Nauk SSSR. Tekhn. Kibern. 1 (1970) 56 (in Russian).

    Google Scholar 

  123. A.D. Soloviev and V.A. Zaitsev, A redundancy with an incomplete repair, Izv. Akad. Nauk SSSR. Tekhn. Kibern. 1 (1975) 72 (in Russian).

    Google Scholar 

  124. A.D. Soloviev, Asymptotic behaviour of the first occurrence time of a rare event in a regenerative process, Izv. Akad. Nauk SSSR. Tekhn. Kibern. 6 (1971) 79 (in Russian).

    Google Scholar 

  125. W. Stadje, A new approach to the distribution of the duration of the busy period for aG/G/1 queueing system, J. Austral. Math. Soc. Ser. A 48 (1990) 89; MR 91c: 60133.

    Google Scholar 

  126. S. Stidham Jr. and M. El Taha, Sample-path analysis of processes with imbedded point processes, Queueing Syst. 5 (1989) 131–165; MR 91c: 60134.

    Google Scholar 

  127. L.S. Stoikova, Estimates for some functionals characterizing the reliability, Kibernetica (1978) 113–119 (in Russian).

  128. D. Stoyan,Comparison Methods for Queues and Other Stochastic Models (Wiley, New York, 1983).

    Google Scholar 

  129. J. Sztrik, Asymptotic reliability analysis of some complex systems repair operating in random environments, J. Inf. Proc. Cybernet. 25 (1989) 37–43; MR 90g: 60086 (German and Russian summaries).

    Google Scholar 

  130. J. Sztrik and V.V. Anisimov, Reliability analysis of a complex renewable system with fast repair, J. Inf. Proc. Cybernet. 25 (1989) 573–580; MR 91d: 60217 (in Russian).

    Google Scholar 

  131. H. Thorisson, The coupling of regenerative processes, Adv. Appl. Prob. 15 (1983) 531.

    Google Scholar 

  132. H. Thorisson, The queueGI/G/1: finite moments of the cycle variables and uniform rates of convergence, Stochast. Proc. Appl. 19 (1985) 85.

    Google Scholar 

  133. H. Thorisson, A complete coupling proof of Blackwell's renewal theorem, Stochast Proc. Appl. 26 (1987) 87.

    Google Scholar 

  134. H. Thorisson, Construction of a stationary regenerative process, Stochast. Proc. Appl. 42 (1992) 237.

    Google Scholar 

  135. H.C. Tijms,Stochastic Modelling and Analysis (Wiley, Chichester, 1986).

    Google Scholar 

  136. G.Sh. Tsitsiashvili, Quantitative estimate of joint effect in the simplest multichannel queueing systems, Problemy ustoichiv. stokhast. modelei. Trudy seminara, BNIISI, Moscow (1988).

    Google Scholar 

  137. A.F. Turbin, Investigations of operators and random processes asymptotic phase aggregation, Avtoref. diss. dokt. fiz. -mat. nauk (Inst. Math. Acad. Sci. Ukr. SSR, Kiev, 1980) (in Russian).

    Google Scholar 

  138. I.A. Ushakov and Ya. G. Genis,An Estimate of Repairable Redundant Systems Reliability at Design (Znaniye, Moscow, 1986) (in Russian).

    Google Scholar 

  139. O.P. Vinogradov, Asymptotic distribution of the instant of first loss of a customer in the case of fast servicing, Techn. Kibernetica 12 (1974) 86–92.

    Google Scholar 

  140. S.Yu. Vsekhsvyayskii and V.V. Kalashnikov, Estimates in the Rényi theorem in terms of renewal theory, Teor. Veroyatnost. i Primen. 33, 2 (1988) 369; MR 89g: 60088 (in Russian).

    Google Scholar 

  141. M. Westcott, The probability generating functional, J. Austral. Math. Soc. 14 (1972) 448.

    Google Scholar 

  142. D.P. Wiens, On the busy period distribution of theM/G/2 queueing system, J. Appl. Prob. 27 (1989) 858.

    Google Scholar 

  143. G.E. Willmot, Comment on: “A note on the equilibriumM/G/1 queue length,” J. Appl. Prob. 25 (1988) 839; MR 89g: 60298b.

    Google Scholar 

  144. R.W. Wolff,Stochastic Modeling and the Theory of Queues (Prentice-Hall, Englewood Cliffs, NJ, 1988); MR 91a: 60228.

    Google Scholar 

  145. M. Xie, Some results on renewal equations, Commun. Statist. Theory Meth. 18 (1989) 1159; MR 90m: 60098.

    Google Scholar 

  146. S.J. Yakowitz,Computational Probability and Simulation (Addison-Wesley, London/Amsterdam/Don Mills/Ontario/Sydney/Tokyo, 1977).

    Google Scholar 

  147. S.F. Yashkov,The Analysis of Queues in Computers (Radio i Sviaz', Moscow, 1989) (in Russian).

    Google Scholar 

  148. M.A. Yastrebenetskii, On a rarefaction of Markov renewal process with reference to some reliability problems, Izv. Akad. Nauk SSSR. Tekhn. Kibern. 4 (1972) 97 (in Russian).

    Google Scholar 

  149. S.M. Yermakov and V.B. Melas, On optimal paths ramification in the simulation of the systems described by stationary random processes, Izv. Akad. Nauk SSSR. Tekhn. Kibern. 2 (1989) 64 (in Russian).

    Google Scholar 

  150. S.M. Yermakov and V.V. Karynkin, Monte Carlo interpretation of the Fredholm method, Vestnik Leningrad. Univ Math. 21 (1988) 22.

    Google Scholar 

  151. V.A. Zaitsev, On convergence rate to the exponential distribution of faultless operation probability for standby repairable systems, Izv. Akad. Nauk SSSR. Tekhn. Kibernet. 2 (1976) 67 (in Russian).

    Google Scholar 

  152. G. Zainutdinov, Limit distribution for the time of the first loss of a customer for some classes of priority queueing systems, Issledov. Operatsii i ASU 24 (1984) 28 (in Russian).

    Google Scholar 

  153. G.F. Zainutdinov, Limit distribution for the time of the first loss in a priority queueing system with a semi-Markov input flow, Izv. Akad. Nauk UzSŠR Ser. Fiz.-Mat. Nauk 3 (1985) 14; MR 87h: 60181 (in Russian).

    Google Scholar 

  154. L.A. Zavadskaya, Estimation of reliability of the system with testing and preventive policy by analytical and statistical method, Kibernetica 2 (1981) 56 (in Russian).

    Google Scholar 

  155. L.A. Zavadskaya, On an approach to simulation speedup of redundant systems, Electronnoye Modelizovanie 3 (1984) 57 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovalenko, I.N. Rare events in queueing systems—A survey. Queueing Syst 16, 1–49 (1994). https://doi.org/10.1007/BF01158947

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01158947

Keywords

Navigation