Abstract
Several practical approaches have been used to estimate the probabilities of rare events occurring in queueing processes. Rare events of practical interest can be considered as large deviations for a fixed queueing process (such as level crossing by the waiting time, or the queue length) or as those for a limiting triangular scheme. This paper is a survey of the literature devoted to the regenerative analysis of rare events. Because of the importance of busy period parameters, rare events within a busy period are discussed. A number of small parameter theorems useful in rare events analysis are outlined, including singular states aggregation theorems. Simulation methods for rare events analysis and other numerical methods are also presented.
Similar content being viewed by others
References
V.M. Abramov, Some new applications of an asymptotic theorem on the time of first occurrence of a rare event in a regenerative process, Izv. Acad. Nauk Tadzhik. SSR. Otdel. Fiz.-Mat. Khim. i Geol. Nauk 1986, No. 4 (102), 29–33 (1987) MR: 89e: 60174 (in Russian. Tajiki summary).
O.M.E. Ali and M.F. Neuts, A queue with service times dependent on their order within the busy periods, Commun. Statist.-Stochast. Models 2 (1966) 67.
V.V. Anisimov, Switching process, Kibernetica 4 (1977) 111 (in Russian).
V.V. Anisimov, Limit theorems for switching process and their applications, Kibernetica 6 (1978) 108 (in Russian).
V.V. Anisimov and G.F. Zainutdinov, Limit distributions for the time of the first loss of a customer in controllable Markov queueing systems with priorities, Vestnik Kiev. Univ. Model. Opt. Slozhn., Syst. 4 (1985) 3; MR 90d: 60078 (in Russian).
V.V. Anisimov and Pushkin, Asymptotic estimates for reliability characteristics of a hierarchical Markov system, Cybern. Inst. Akad. Sci. Ukr. SSR, Kiev (1986) (in Russian).
S. Asmussen, Conjugate process and the simulation of ruin problems, Stochast. Proc. Appl. 20 (1985) 213.
S. Asmussen, Ladder heights and the Markov-modulatedM/G/1 queue, Stochast. Process. Appl. 37 (1991) 313–326.
S. Asmussen, Light traffic equivalence in single server queues, Ann. Appl. Prob. (Aug. 1992) 1.
S. Asmussen, Queueing simulation in heavy traffic, Math. Oper. Res. 17 (1992) 84–111.
S. Asmussen,Applied Probability and Queues (Wiley, Chichester, 1987).
S. Asmussen, Phase-type representations in random walk and queueing problems, Ann. Prob. 20 (1992) 772–789.
S. Asmussen and S.G. Foss, Renovation, regeneration and coupling in multiple-server queues in continuous time,Proc. 3rd Finnish-Soviet Symp., Turku (1991) pp. 1–5.
S. Asmussen, P.W. Glynn and H. Thorisson, Stationarity detection in the initial transient problem, ACM TOMACS 2 (1993).
S. Asmussen and D. Perry, On cycle maxima, first passage problems and extreme value theory for queues, Commun. Statist.-Stochast. Models 8 (1992) 421–458.
S. Asmussen and H. Thorisson, Large deviation results for time-dependent queue length distributions, Commun. Statist-Stochast. Models 1 (1988) 99; MR 89e: 60182.
T.A. Azlarov, D.A. Atakuziyev and A.A. Djamirzayev, Summation scheme of random variables with geometrically distributed index,Predeln. teoremy dlya sluch. protses. (Fan, Tashkent, 1977) (in Russian).
F. Baccelli and P. Brémaud, Virtual customers in sensitivity and light traffic analysis via Campbell's formula for point processes, J. Appl. Probl. 20 (1991) 1–19.
G.P. Basharin, P.P. Bocharov and Ya.A. Kogan,Queueing Analysis in Computing Networks (Nauka, Moscow, 1989) (in Russian).
G.P. Basharin, P.P. Bocharov and S.S. Spesivov, On algorithmic support and software of analytic simulation methods for information computing systems and their components, Akad. Nauk SSSR. Nauchn. Soviet po Probleme Kibernetice, Moscow (1983) (in Russian).
Yu.K. Belyaev, Limit theorems for dissipative flows, Theory Prob. Appl. 8 (1963) 165 (in Russian).
R.E. Bernet, Modellierung reparierbarer Systeme durch Markoff- und semi-regenerative Prozesse, Thesis of doct. dissertation, Eidgenössische Technische Hochschule Zürich (1992).
D.J. Bertsimas, I. Keilson, D. Nakazato and H. Zhang, Transient and busy period analysis of theGI/G/1 queue as a Hubert factorization problem, J. Appl. Prob. 28 (1991) 873.
A. Birolini, Semi-Markoff- und verwandte Prozesse, Thesis of doct. dissertation, Eidgenössische Technische Hochschule Zürich (1974).
A. Birolini,On the Use of Stochastic Processes in Modelling Reliability Problems (Springer, Berlin/Heidelberg/New York/Tokyo, 1985).
A.A. Borovkov,Asymptotical Methods in Queueing Theory (Nauka, Moscow, 1980) (in Russian).
M. Brown, Error bounds for exponential approximations of geometric convolutions, Ann. Prob. 18 (1990) 1388.
M.L. Chaudhry and J.G.C. Templeton,A First Course in Bulk Queues, 2nd ed. (North-Holland, Amsterdam, 1983).
K. Cheng and Z.F. He, On the first failure time of a system in a randomly varying environment, in:Reliability Theory and Applications (Shonghai, Xian, Beijing, 1987) pp. 34–43, World Sci. Publ., Singapore, 1987; MR 88j: 60148.
J.W. Cohen,The Single Server Queue, 2nd ed. (North-Holland, Amsterdam, 1982).
R.B. Cooper,Introduction to Queueing Theory, 2nd ed. (North-Holland, New York/Oxford, 1981).
M.A. Crane and A.J. Lemoine,An Introduction to the Regenerative Method for Simulation Analysis, Lecture Notes in Control and Information Sciences 4 (Springer, New York/Heidelberg/Berlin, 1977).
H. Daduna, On the busy period in networks of queues: mean value analysis,11th Symp. on Operations Research (Darmstadt, 1986) pp. 177–184, Meth. Oper. Res. 57 (Athenäum/Hain/ Hanstein, Königstein/Ns., 1987); MR 88m: 60240.
D. Daley and T. Rolsky, Light traffic approximations in queues, Math. Oper. Res. (1990).
E.A. Danielyan and A.A. Geokchyan, Asymptotic analysis of systems with “fast” service, Izv. Akad. Nauk SSSR. Tekhn. Kibern. 6 (1976) 121 (in Russian).
A.A. Djamizzaev, Uniform bounds for the convergence of a sum of a random number of random variables to the exponential distribution, Universitatis Scientarum Budapestiensis, Sectio Mathematica, 21 (1978) 21–26.
R. De Dominicis and R. Manca, An algorithmic approach to nonhomogeneous semi-Markov processes, Commun. Statist. B — Simul. Comput. 13 (1984) 823; MR 87g: 6076a.
N.M. van Dijk, Perturbation theory for unbounded Markov reward process with applications to queueing, Adv. Appl. Prob. 20 (1988) 99.
N.M. van Dijk and M.L. Puterman, Perturbation theory for Markov reward process with applications to queueing systems, Adv. Appl. Prob. 20 (1988) 79.
R.L. Dobrushin, M.Ya. Kelbert, A.N. Rybko and Yu.M. Sukhov,Qualitative Methods of Queueing Network Theory, Inst. Problem Peredachi Inform. Akad. Nauk SSSR (Moscow, 1986) (in Russian).
A.M. Eikeboom and H.C. Tijms, Waiting time percentiles in the multiserverM x/G/C queue with batch arrivals, Prob. Eng. Inf. Sci. l (1987) 75.
S.P. Ellis, Second-order approximation to the characteristic function of certain point-process integrals, Adv. Appl. Prob. 19 (1987) 546.
S.G. Foss, The method of renovating events and its applications in queueing theory, in:Semi-Markov Models (Brussels, 1984) pp. 337–350, Plenum, New York/London, 1986; MR 88d: 60233.
P. Franken, D. König, U. Arndt and V. Schmidt,Queues and Point Processes (Akademie-Verlag/Wiley, Berlin/New York, 1981).
I.B. Gertsbakh, Asymptotic methods in reliability theory: a review, Adv. Appl. Prob. 16 (1984) 147.
S. Ghahramani, Finiteness of moments of partial busy periods forM/G/C queues, J. Appl. Prob. 23(1986)261.
S. Ghahramani, On remaining full busy periods ofGI/G/C queues and their relation to stationary point processes, J. Appl. Prob. 27 (1990) 232.
S. Ghahramani and R.W. Wolff, A new proof of finite moment conditions forGI/G/I busy periods, Queueing Syst. 4 (1989) 171; MR 90m: 60106.
V. Giurgiuciu,Elements of Probabilistic Analysis with Applications (editura Academiei, Bucuresti; Kluwer Academic, Dordrecht/Boston/London).
P. Glasserman,Gradient Estimation via Infinitesimal Perturbation Analysis (Kluwer, 1991).
P.W. Glynn and D.L. Iglehart, Simulation methods for queues: an overview, Queueing Syst. 3 (1988) 221; MR 87e: 60117.
B.V. Gnedenko and I.N. Kovalenko,Introduction to Queueing Theory, 2nd ed. (Birkhäuser, Boston/Basel/Berlin, 1989).
B.V. Gnedenko and D. König (eds.),Handbuch der Bedienungstheorie (Akademie-Verlag, Berlin, I-1983,II-1984).
D.B. Gnedenko and A.D. Soloviev, A general model of redundancy with repair, Izv. Akad. Nauk SSSR. Tekhn. Kibern. 6 (1974) 113 (in Russian).
D.B. Gnedenko and A.D. Soloviev, Estimations of complex repairable systems reliability, Izv. Akad. Nauk SSSR. Tekhn. Kibern. 3 (1975) 121 (in Russian).
V.A. Gryshchenko, Approximation of the stream of demands lost by multichannel queueing system under conditions of rare losses, Avtoref. diss. kand. Siz.-mat. nauk, Inst. Math. Acad. Nauk Ukr SSR, Kiev (1981).
V.A. Gryshchenko and E.L. Danylenko, Approximation of the flow of failures of highly reliable inhomogeneous queueing systems, Analytic methods in reliability theory (in Russian), 40–45, iii, Akad, Nauk Ukrain. SSR, Inst. Mat. Kiev (1985); MR 88i: 60151.
P. Hall, J.L. Teugels and A. Vanmarcke, The abscissa of convergence of the Laplace transform, J. Appl. Prob. 29 (1992) 353.
V.V. Ivanov,Computational Methods on Computers. A Handbook (Naukova Dumka, Kiev, 1986) (in Russian).
D. Jagerman, Approximations for waiting time inGI/G/1 systems, Queueing Syst. 2 (1987) 351; MR 89c: 60106.
M. Jain and G.C. Sharma, Some bounds on the mean queueing time based on busy period consideration, J. Maulana Azad College Tech. 18 (1985) 125; MR 87f: 60143.
S. Jolkov and V. Rykov, Generalized regenerative processes with imbedded regeneration periods and their applications, Math. Operationshforsch. Statist. Ser. Optimization 12 (1981) 575.
V.V. Kalashnikov, Regenerative queueing processes and their qualitative and quantitative analysis, Queueing Syst. 6 (1990) 113.
V.V. Kalashnikov, Analytical and simulation estimates of reliability for regenerative models, Syst. Anal. Mod. Simul. 6 (1989) 833–851.
V.V. Kalashnikov and S.T. Rachev,Mathematical Methods for Constructing Queueing Models, The Wadsworth & Brooks/Cole Operations Research Series, Pacific Grove, CA (1990) 431 pp.
V.V. Kalashnikov, Deriving parameters of first failure time by semi-regenerative processes analysis. Problems of stochastic models stability, Moscow, VNIISI (1990) 21–31 (in Russian).
O. Kallenberg,Random Measures (Akademie-Verlag, Berlin; Academic Press, New York, 1976).
N.V. Kartashov, Strongly stable Markov chains, Problemy ustoichivosti stokhasticheskikh modeley, Trudy seminara, BNIISI (1981) 54–59 (in Russian).
N.V. Kartashov, Operator methods in limit theorems for Markov processes, Prob. Theory Appl. 4 (1984) 792 (in Russian).
L. Kleinrock,Queueing Systems, Vol. 2:Computer Applications (Wiley, New York/London/ Sydney/Toronto, 1976).
D.G. Konstantinidis and A.D. Soloviev, Uniform estimate of reliability for a complex regenerated system with unlimited number of repair units, Moscow University Mathematics Bulletin 16, No. 3 (1991) 21.
V.S. Koroliuk, I.P. Penev and A.F. Turbin, An asymptotic expansion for the absorbing time of a Markov chain distribution, Kibernetica 4 (1973) 133 (in Russian).
V.S. Koroliuk and A.V. Svishchuk,Semi-Markovian Random Evolutions and Their Applications (Naukova Dumka, Kiev, 1993) (in Russian).
V.S. Koroliuk and A. Tadjiyev, Asymptotic behaviour of semi-Markov evolutions to absorption time, Primenen. Analit. Metodov v Veroyatn. Zadachakh, Inst. Mat. Akad. Nauk Ukr. SSR, Kiev (1986) (in Russian).
V.S. Koroliuk and A.F. Turbin,Semi-Markov Processes and Their Applications (Naukova Dumka, Kiev, 1976) (in Russian).
V.S. Koroliuk and A.F. Turbin,Mathematical Foundations of the Phase Aggregation of Complex Systems (Naukova Dumka, Kiev, 1978) (in Russian).
V.S. Koroliuk and A.F. Turbin, Methods of analytic estimation for reliability characteristics of repairable systems, Ser. “Znaniye” Ukr. SSR, Kiev (1983) (in Russian).
I.N. Kovalenko, Some questions of complex systems reliability theory, Kibernetica na sludj. kommun. 2 (1964) 194 (Energia Publ., Moscow) (in Russian).
I.N. Kovalenko, On the class of limiting distributions for thinning streams of homogeneous events, Litovskii Matematicheskii Sbornik. 5, 4 (1965) 569 (in Russian).
I.N. Kovalenko,Rare Events Analysis in the Estimation of Systems Efficiency and Reliability (Sov. Radio Publ., Moscow, 1980) (in Russian).
I.N. Kovalenko,Probability Calculations and Optimization (Naukova Dumka, Kiev, 1989) (in Russian).
I.N. Kovalenko, N.Yu. Kuznetsov and V.M. Shurenkov,Random Processes. Reference Book (Naukova Dumka, Kiev, 1983) (in Russian).
V.M. Kurglov and Yu.V. Korolev,Limit Theorems for Random Sums (Moscow Univ. Publ., Moscow, 1990) (in Russian).
B.N. Kuznetsov, Semi-Markov processes with arbitrary set of states in problems of reliability analysis of complex repairable systems, Avtoref. diss. kand. fiz.-mat. nauk (Inst. Math. Acad. Sci. Ukr. SSR, Kiev, 1981) (in Russian).
N.Yu. Kuznetsov, A general approach to the estimation of a trouble-free operation probability of a structural complex systems by analytical and statistical method, Kibernetica 3 (1985) 86 (in Russian).
N.Yu. Kuznetsov, Accelerated simulation methods for non-stationary reliability characteristics of the complex systems (Cybern. Inst. Acad. Sci. Ukrain. SSR, Kiev, 1985) (in Russian).
N.Yu. Kuznetsov, Computation of the availability of repairable systems by analytical and statistical method, Kibernetica 5 (1985) 95 (in Russian).
I.Yu. Linnik, On the improvement of Monte-Carlo method convergence of queueing systems parameters estimation, Veroyatnost. Metody Resheniya Zad. Mat. Fiz. (Novosibirsk, 1971) (in Russian).
I.Yu. Linnik, An improvement of Monte-Carlo method convergence in some queueing problems, Kibernetica 5 (1973) 129 (in Russian).
I.Yu. Linnik and L.P. Mironenko, The dummy step method in statistical simulation of incomplete access systems with failures, Izv. Akad. Nauk SSSR. Tekhn. Kibernet. 6 (1976) 102 (in Russian).
V.A. Malyshev and M.V. Menshikov, Ergodicity, continuity and analyticity of countable Markov chains, Trudy Moscow Matematicheskogo Obschestva 39 (1979) (in Russian).
D.L. Minh, A variant of the conditional expectation variance reduction techniques and its application to the simulation of theG//G/1 queues, Manag. Sci. 35 (1989) 1334; MR 90m: 65020.
M. Miyazama, Approximation of the queue-length distribution of anM/GI/S queue by the basic equations, J. Appl. Prob. 23 (1986) 443; MR 87h: 60170.
E.V. Morozov, A renewal of multichannel queues, Dokl. Akad. Nauk BSSR 31, 2 (1987) 120 (in Russian).
V.A. Nagonenko and A.V. Pechinkin, A light load in a system with inverse order of serving and a probabilistic priority, Izv. Akad. Nauk SSSR Tekhn. Kibernet. 6 (1985) 82 [transi.: Sov. J. Comput. Systems Sci. 23 (1985) 51]; MR 87e: 60160.
A.N. Nakonechnyi, On the representation of systems' trouble-free operation probability as the mean from W-functional of a discontinuous Markov process, Kibernetica 5 (1985) 92 (in Russian).
I.C.W. van Ommeren, Exponential expansion for the tail of the waiting-time probability in the single-server queue with batch arrivals, Adv. Appl. Prob. 20 (1988) 880.
V.N. Ovchinnikov, Asymptotic behaviour of the time to first failure in a model of nonhomogeneous redundancy with fast repair, Izv. Akad. Nauk SSSR. Tekhn. Kibern. 2 (1976) 82 (in Russian).
V.N. Ovchinnikov, On asymptotic behaviour of the customer first loss time under service depending on a system state, Izv. Akad. Nauk SSSR. Tekhn. Kibern. 6 (1976) 114 (in Russian).
S. Parekh and T. Walrand, Quick simulation of excessive backlogs in networks of queues, in:Stochastic Differential Systems, Stochastic Control Theory and Their Applications (Minneapolis, MN, 1986) pp. 439–472 (Springer, New York/Berlin, 1988); MR 89c: 60109.
A.V. Pechinkin, The analysis of one-server systems with small load, Izv, Akad. Nauk SSSR. Tekhn. Kibernet. 3 (1984) 143 (in Russian) (transl.: Eng. Cybern. 22 (1984) 129–135).
N.U. Prabhu,Queues and Inventories (Wiley, New York, 1965).
S.G. Pushkin, Asymptotic analysis of Markov systems with mixing, Avtoref. diss, kand. fiz.- mat. nauk (Kiev State Univ., Kiev, 1986) (in Russian).
M.I. Reiman and B. Simon, Light traffic limits of sojorn time distributions in Markovian queueing networks, Commun. Statist. Stochast. Models 4 (1988) 191.
A. Reibman, R. Smith and K. Trivedi, Markov and Markov reward model transient analysis: an overview of numerical approaches, Eur. J. Oper. Res. 40 (1989) 257.
M.I. Reiman and B. Simon, Open queueing systems in light traffic, Math. Oper. Res. 14 (1989) 26.
A. Renyi, Poisson-folyamat egy jeuemzese (A characteristic of the Poisson stream), Proc. Math. Inst. Hungarian Acad. Sei. l (1956) 563.
R.Y. Rubinstein and A. Shapiro,Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization via the Score Function Method (Wiley, 1993).
V.V. Rykov, Investigation of a general single-channel system by the method of regenerative processes. Part II. The main processes investigation at regeneration period, Izv. Akad. Nauk SSSR. Tekhn. Kibernet. 1 (1984) 126 (in Russian).
V.V. Rykov and M.A. Yastrebeneetskii, On regenerative processes with several types of regeneration points, Kibernetica 3 (1971) 82 (in Russian).
O. Sakhobov, Two-sided uniform bounds for queueing systems, Kibernetica (1989) No. 1, 112–113 (in Russian, English summary).
L. Seidl', Estimation of the moment of the regeneration period in a central closed system, Teor. Veroyatnost. i Primenen. 31 (1986) 358 (in Russian).
B.A. Sevastianov, Limit Poisson law in a scheme of dependent random variables, Theor. Prob. Appl. 17 (1972) 733–738 (in Russian).
G.S. Shedler, Regeneration and networks of queues, in:Applied Probability, A Series of the Applied Probability Trust (Springer, New York/Berlin, 1987).
I.G. Shanthikumar and U. Sumita, On the busy-period distributions ofM/G/1/Kqueues with state-dependent arrivals and FCFS/LCFS-P service disciplines. J. Appl. Prob. 22 (1985) 912; MR 87: 60091.
O.P. Sharma and B. Shobna, On the busy period of anM/M/1/N queue, J. Combin. Inform. System Sci. 11 (1986) 110; MR 89g: 602996.
O.P. Sharma and I. Dass, Transient analysis of anM/M/r machine interference model, Stochast. Anal. Appl. 6 (1988) 205113.
V.D. Shpak, Unbiased estimates for the solution of linear integral equation of the second kind and their applications to computing of semi-Markov systems reliability characteristics, Doklady Akad. Nauk Ukr. SSR. Ser A. 10 (1989) 81 (in Russian).
V.D. Shpak, Analytical-statistical estimates for time-dependent indexes of reliability and efficiency of semi-Markov systems, Kibernetika 3 (1991) (in Russian).
V.D. Shpak, T.P. Kuzmenko and G.A. Marchuk, A package of programs for computation of reliability characteristics of systems with complex structure DISP, Inst. Kibern. Akad. Nauk Ukr. SSSR (1990).
V.D. Shpak and G.A. Marchuk, Algorithmization of computation for characteristics of multiregime system with continuous and periodic serviceability control, Metody Issled, operatsii i teor. nadezh. Sybernet. Int. Acad. Sci. Ukr. SSR (Kiev, 1977).
A.D. Soloviev, A redundancy with fast repair, Izv. Akad. Nauk SSSR. Tekhn. Kibern. 1 (1970) 56 (in Russian).
A.D. Soloviev and V.A. Zaitsev, A redundancy with an incomplete repair, Izv. Akad. Nauk SSSR. Tekhn. Kibern. 1 (1975) 72 (in Russian).
A.D. Soloviev, Asymptotic behaviour of the first occurrence time of a rare event in a regenerative process, Izv. Akad. Nauk SSSR. Tekhn. Kibern. 6 (1971) 79 (in Russian).
W. Stadje, A new approach to the distribution of the duration of the busy period for aG/G/1 queueing system, J. Austral. Math. Soc. Ser. A 48 (1990) 89; MR 91c: 60133.
S. Stidham Jr. and M. El Taha, Sample-path analysis of processes with imbedded point processes, Queueing Syst. 5 (1989) 131–165; MR 91c: 60134.
L.S. Stoikova, Estimates for some functionals characterizing the reliability, Kibernetica (1978) 113–119 (in Russian).
D. Stoyan,Comparison Methods for Queues and Other Stochastic Models (Wiley, New York, 1983).
J. Sztrik, Asymptotic reliability analysis of some complex systems repair operating in random environments, J. Inf. Proc. Cybernet. 25 (1989) 37–43; MR 90g: 60086 (German and Russian summaries).
J. Sztrik and V.V. Anisimov, Reliability analysis of a complex renewable system with fast repair, J. Inf. Proc. Cybernet. 25 (1989) 573–580; MR 91d: 60217 (in Russian).
H. Thorisson, The coupling of regenerative processes, Adv. Appl. Prob. 15 (1983) 531.
H. Thorisson, The queueGI/G/1: finite moments of the cycle variables and uniform rates of convergence, Stochast. Proc. Appl. 19 (1985) 85.
H. Thorisson, A complete coupling proof of Blackwell's renewal theorem, Stochast Proc. Appl. 26 (1987) 87.
H. Thorisson, Construction of a stationary regenerative process, Stochast. Proc. Appl. 42 (1992) 237.
H.C. Tijms,Stochastic Modelling and Analysis (Wiley, Chichester, 1986).
G.Sh. Tsitsiashvili, Quantitative estimate of joint effect in the simplest multichannel queueing systems, Problemy ustoichiv. stokhast. modelei. Trudy seminara, BNIISI, Moscow (1988).
A.F. Turbin, Investigations of operators and random processes asymptotic phase aggregation, Avtoref. diss. dokt. fiz. -mat. nauk (Inst. Math. Acad. Sci. Ukr. SSR, Kiev, 1980) (in Russian).
I.A. Ushakov and Ya. G. Genis,An Estimate of Repairable Redundant Systems Reliability at Design (Znaniye, Moscow, 1986) (in Russian).
O.P. Vinogradov, Asymptotic distribution of the instant of first loss of a customer in the case of fast servicing, Techn. Kibernetica 12 (1974) 86–92.
S.Yu. Vsekhsvyayskii and V.V. Kalashnikov, Estimates in the Rényi theorem in terms of renewal theory, Teor. Veroyatnost. i Primen. 33, 2 (1988) 369; MR 89g: 60088 (in Russian).
M. Westcott, The probability generating functional, J. Austral. Math. Soc. 14 (1972) 448.
D.P. Wiens, On the busy period distribution of theM/G/2 queueing system, J. Appl. Prob. 27 (1989) 858.
G.E. Willmot, Comment on: “A note on the equilibriumM/G/1 queue length,” J. Appl. Prob. 25 (1988) 839; MR 89g: 60298b.
R.W. Wolff,Stochastic Modeling and the Theory of Queues (Prentice-Hall, Englewood Cliffs, NJ, 1988); MR 91a: 60228.
M. Xie, Some results on renewal equations, Commun. Statist. Theory Meth. 18 (1989) 1159; MR 90m: 60098.
S.J. Yakowitz,Computational Probability and Simulation (Addison-Wesley, London/Amsterdam/Don Mills/Ontario/Sydney/Tokyo, 1977).
S.F. Yashkov,The Analysis of Queues in Computers (Radio i Sviaz', Moscow, 1989) (in Russian).
M.A. Yastrebenetskii, On a rarefaction of Markov renewal process with reference to some reliability problems, Izv. Akad. Nauk SSSR. Tekhn. Kibern. 4 (1972) 97 (in Russian).
S.M. Yermakov and V.B. Melas, On optimal paths ramification in the simulation of the systems described by stationary random processes, Izv. Akad. Nauk SSSR. Tekhn. Kibern. 2 (1989) 64 (in Russian).
S.M. Yermakov and V.V. Karynkin, Monte Carlo interpretation of the Fredholm method, Vestnik Leningrad. Univ Math. 21 (1988) 22.
V.A. Zaitsev, On convergence rate to the exponential distribution of faultless operation probability for standby repairable systems, Izv. Akad. Nauk SSSR. Tekhn. Kibernet. 2 (1976) 67 (in Russian).
G. Zainutdinov, Limit distribution for the time of the first loss of a customer for some classes of priority queueing systems, Issledov. Operatsii i ASU 24 (1984) 28 (in Russian).
G.F. Zainutdinov, Limit distribution for the time of the first loss in a priority queueing system with a semi-Markov input flow, Izv. Akad. Nauk UzSŠR Ser. Fiz.-Mat. Nauk 3 (1985) 14; MR 87h: 60181 (in Russian).
L.A. Zavadskaya, Estimation of reliability of the system with testing and preventive policy by analytical and statistical method, Kibernetica 2 (1981) 56 (in Russian).
L.A. Zavadskaya, On an approach to simulation speedup of redundant systems, Electronnoye Modelizovanie 3 (1984) 57 (in Russian).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kovalenko, I.N. Rare events in queueing systems—A survey. Queueing Syst 16, 1–49 (1994). https://doi.org/10.1007/BF01158947
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01158947