[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Two algorithms for constructing a Delaunay triangulation

  • Published:
International Journal of Computer & Information Sciences Aims and scope Submit manuscript

Abstract

This paper provides a unified discussion of the Delaunay triangulation. Its geometric properties are reviewed and several applications are discussed. Two algorithms are presented for constructing the triangulation over a planar set ofN points. The first algorithm uses a divide-and-conquer approach. It runs inO(N logN) time, which is asymptotically optimal. The second algorithm is iterative and requiresO(N 2) time in the worst case. However, its average case performance is comparable to that of the first algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Besag, “Spatial interaction and the statistical analysis of lattice systems,”J. Royal Stat. Soc. B 36 (2):192–236 (1974).

    Google Scholar 

  2. D. J. Bogue, “The Structure of the Metropolitan Community,” University of Michigan Contributions of the Institute of Human Adjustment Social Science, University of Michigan, Ann Arbor, Michigan (1949).

    Google Scholar 

  3. B. Delaunay, “Sur la sphère vide,”Bull. Acad. Science USSR VII:Class. Sci. Mat. Nat. 793–800 (1934).

  4. H. Fuchs and Z. M. Kedem, “The Highly Intelligent Tablet as an Efficient Printing Device for Interactive Graphics,” University of Texas (Dallas) (1979). Program in Math. Science (1979).

  5. M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan, “Triangulating a simple polygon,”Inform. Proc. Letters 7:175–179 (June 1978).

    Google Scholar 

  6. E. N. Gilbert, “Random subdivision of space into crystals,”Ann. Math. Stat. 33: 958–972 (1962).

    Google Scholar 

  7. P. J. Green and R. Sibson, “Computing Dirichlet tesselations in the plane,”Computer J. 21 (2):168–173 (July 1978).

    Google Scholar 

  8. T.Kiang, “Random fragmentation in two and three dimensions,”Z. Astrophysik 64:433–439 (1966).

    Google Scholar 

  9. C. L. Lawson, “Generation of a Triangular Grid with Applications to Contour Plotting,” Technical Memo. 299, Jet Propulsion Laboratory, Pasadena, California (February 1972).

    Google Scholar 

  10. C. L. Lawson, “Software forC 1 surface interpolation,”in Mathematical Software III, J. Rice, Ed. (Academic Press, New York, 1977).

    Google Scholar 

  11. D. T. Lee, “On Finding κ-Nearest Neighbors in the Plane,” Technical Report Eng. 76-2216, Coordinated Science Laboratory, University of Illinois, Urbana, Illinois (1976).

    Google Scholar 

  12. D. T. Lee, “Proximity and Reachability in the Plane,” Ph.D. Thesis, Coordinated Science Laboratory Report ACT-12, University of Illinois, Urbana, Illinois (1978).

    Google Scholar 

  13. D. T. Lee, “Two-dimensional Voronoi diagrams in theL p-metric,”J. ACM (accepted for publication).

  14. D. T. Lee and C. K. Wong, “Voronoi diagrams inL 1 (L ) metrics with two-dimensional storage applications,”SIAM J. Computing (accepted for publication).

  15. B. A. Lewis and J. S. Robinson, “Triangulation of planar regions with applications,”Computer J. 21 (4):324–332 (Nov. 1978).

    Google Scholar 

  16. E. L. Lloyd, “On Triangulation of a Set of Points in the Plane,” Technical Report MIT/LCS/TM-88, Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts (May 1977).

    Google Scholar 

  17. P. E. Lloyd and P. Dicken,Location in Space: A Theoretical Approach to Economic Geography (Harper and Row, New York, 1972).

    Google Scholar 

  18. B. Matern, “Spatial variation,”Medd. Statens Skogsforskninginstit. 36 (5):1–144 (1960).

    Google Scholar 

  19. D. H. McLain, “Two dimensional interpolation from random data,”Computer J. 19 (2):178–181 (1976); Errata,Computer J. 19 (4):384 (1976).

    Google Scholar 

  20. R. E. Miles, “Solution to problem 67-15 (Probability distribution of a network of triangles),”SIAM Rev. 11:399–402 (1969).

    Google Scholar 

  21. R. E. Miles, “On the homogeneous planar Poisson point-process,”Math. Biosciences 6:85–127 (1970).

    Google Scholar 

  22. J. Molnar, “Packing of congruent spheres in a strip,”Acta Math. Acad. Sciences Hungaricae Jomus 31 (1–2):173–183 (1978).

    Google Scholar 

  23. J. M. Nelson, “A triangulation algorithm for arbitrary planar domains,”Appl. Math. Modelling 2:151–159 (September 1978).

    Google Scholar 

  24. E. C. Pielou,Mathematical Ecology (Wiley, New York, 1977).

    Google Scholar 

  25. M. J. D. Powell and M. A. Sabin, “Piecewise quadratic approximations on triangles,”ACM Trans. Math. Software 3 (4):316–325 (December 1977).

    Google Scholar 

  26. F. P. Preparata and S. J. Hong, “Convex hulls of finite sets of points in two and three dimensions,”Comm. ACM 20 (2):87–93 (February 1977).

    Google Scholar 

  27. D. Rhynsburger, “Analytic delineation of Thiessen polygons,”Geographical Analysis 5 (2):133–144 (April 1973).

    Google Scholar 

  28. C. A. Rogers,Packing and Covering (Cambridge University Press, 1964).

  29. B. Schachter, A. Rosenfeld, and L. S. Davis, “Random mosaic models for textures,”IEEE Trans. Systems, Man, and Cybernetics 8 (9):694–702 (September 1978).

    Google Scholar 

  30. B. J. Schacter, “Decomposition of polygons into convex sets,”IEEE Trans. Computers C-72 (11):1078–1082 (November 1978).

    Google Scholar 

  31. M. I.Shamos,Computational Geometry (Springer-Verlag, New York, 1977).

    Google Scholar 

  32. M. I. Shamos and D. Hoey, “Closest-point problems,”Proceedings of the 16th Annual Symposium on the Foundations of Computer Science, pp. 151–162 (October 1975).

  33. R. Sibson, “Locally equiangular triangulations,”Computer J. 21 (3):243–245 (August 1978).

    Google Scholar 

  34. B. Stears, “Probability distribution of a network of triangles (Problem 67-15),”SIAM Rev. 11:399 (1969).

    Google Scholar 

  35. P. Switzer, “Reconstructing patterns from sampled data,”Ann. Math. Stat. 38:138–154 (1967).

    Google Scholar 

  36. A. H. Thiessen, “Precipitation averages for large areas,”Monthly Weather Rev. 39:1082–1084 (1911).

    Google Scholar 

  37. G.Voronoi, “Nouvelles applications des parametres continus à la théorie des formes quadratiques. Deuxième Mémoire: Recherches sur les parallelloedres primitifs,”J. Reine Angew. Math. 134: 198–287 (1908).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by the National Science Foundation under grant MCS-76-17321 and the Joint Services Electronics Program under contract DAAB-07-72-0259.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D.T., Schachter, B.J. Two algorithms for constructing a Delaunay triangulation. International Journal of Computer and Information Sciences 9, 219–242 (1980). https://doi.org/10.1007/BF00977785

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00977785

Key words

Navigation