[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A framework for Integrating Artificial Intelligence and Simulation

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Both Simulation and Artificial Intelligence try to model reality for problem solving and decision making. In this paper, we propose a framework for integrating the two areas by uncovering fundamental similarities between them and opportunities for combining them which can be mutually useful. The framework also shows the potential gains for Simulation by applying Artificial Intelligence concepts (mainly expert systems) to assist in the simulation process and reveals in an organised way the potential gains for Artificial Intelligence by applying concepts derived from Simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abdel-Hamid, T. & Leidy, F. (1991). An Expert Simulation for Allocating the Quality Assurance Effort in Software Development.Simulation 56(4): 233–240.

    Google Scholar 

  • Angelides, M. C. & Doukidis, G. I. (1990). Is there a Place in Operational Research for Intelligent Tutoring Systems?Journal of the Operational Research Society 41(6): 491–503.

    Google Scholar 

  • Angelides, M. C. & Sabanegh, R. F. (1990).Sixth Generation Computers: New Wine in Old Bottles or Old Wine in New Bottles? Working Paper Series 34, Information Systems Department, London School of Economics, UK.

    Google Scholar 

  • Austin, W. M. & Koshnevis, B. (1989). Automatic Model Generation for Production-Distribution Systems Using Natural Language.Simulation 42(5): 207–211.

    Google Scholar 

  • D'Autrechy, C. L., Reggia, J. A., Sutton III, G. C. & Goodall, S. M. (1988). A General-Purpose Simulation Environment for Developing Connectionist Models.Simulation 51(1): 5–19.

    Google Scholar 

  • Balmer, D. & Paul R. J. (1986). CASM — The Right Environment for Simulation.Journal of the Operational Research Society 37: 443–452.

    Google Scholar 

  • Balmer, D., Goodman, D. & Doukidis, G. I. (1989). Integrating Expert Systems and Simulation for Decision Support. In Doukidis, G. I., Land, F. & Miller, G. (eds.)Knowledge-based Management Support Systems, 134–160. Ellis Horwood: Chichester, UK.

    Google Scholar 

  • Bauman, R. & Turano, T. A. (1986). Production Based Language Simulation of Petri Nets.Simulation 47(5): 191–198.

    Google Scholar 

  • Beck, H. W. & Fishwick, P. A. (1989). Incorporating Natural Language Descriptions into Modelling and Simulation.Simulation 52(3): 102–109.

    Google Scholar 

  • Birtwhistle, G. (ed.) (1985).AI, Graphics and Simulation. The Society for Computer Simulation: San Diego, USA.

    Google Scholar 

  • Blaxton, T. & Westphal, C. (1988). Combining Explicit Queries with Simulation Techniques During Knowledge Acquisition. In Uttamsingh, R. (ed.) AI papers,Simulation Series 20(1): 17–22. The Society for Computer Simulation: San Diego, USA.

    Google Scholar 

  • Browston, L., Farrel, R., Kant E. & Martin, N. (1985).Programming Expert Systems in OPS5: An Introduction to Rule-Based Programming. Addison-Wesley: New York, USA.

    Google Scholar 

  • Carnegie Group (1986).A Natural Language Interface to a Manufacturing Simulation Expert System. Carnegie Group: Pittsburgh, USA.

    Google Scholar 

  • Carter, M. P. (1987). Preliminary Findings of a Survey of OR Society Membership.Journal of the Operational Research Society 38: 3–16.

    Google Scholar 

  • Christy, D. & Watson, J. (1983). The Application of Simulation: A Survey of Industry Practice.Interfaces 13(5): 47–52.

    Google Scholar 

  • Clementson, A. T. (1980).Computer Aided Programming System (CAPS). Detailed Reference Manual. University of Birmingham, Birmingham, UK.

    Google Scholar 

  • Coats, P. (1990): Combining an Expert System with Simulation to Enhance Planning for Banking Networks.Simulation 54(6): 253–264.

    Google Scholar 

  • Cornford, T. & Doukidis, G. I. (1991): An Investigation of the Use of Computers within Operational Research.The European Journal of Information Systems 1(2): 131–140.

    Google Scholar 

  • Darnall, S. (1988). A Knowledge-Based Simulation for the Development of a Real-Time Avionic Expert System. In Uttamsingh, R. (ed.) AI papers,Simulation Series 20(1): 32–35. The Society for Computer Simulation: San Diego, USA.

    Google Scholar 

  • Deslanders, V. & Pierreval, H. (1991). An Expert System Prototype Assisting the Statistical Validation of Simulation Models.Simulation 56(2): 79–89.

    Google Scholar 

  • Dewhurst, F. & Gwinnet, E. (1990). Artificial Intelligence and Decision Analysis.Journal of the Operational Research Society 41: 693–701.

    Google Scholar 

  • Doukidis, G. I. (1985).Discrete Event Simulation Model Formulation Using Natural Language Understanding Systems. P.D. Diss., Operational Research Department, The London School of Economics, University of London, London, UK.

    Google Scholar 

  • Doukidis, G. I. & Paul, R. J. (1985b). Research into Expert Systems to Aid Simulation Model Formulation.Journal of the Operational Research Society 36: 319–325.

    Google Scholar 

  • Doukidis, G. I. (1987). An Anthology on the Homology of Simulation with Artificial Intelligence.Journal of the Operational Research Society 38: 701–712.

    Google Scholar 

  • Doukidis, G. I. & Paul, R. J. (1990). A Survey of the Application of Artificial Intelligence Techniques within the OR Society.Journal of the Operational Research Society 41: 363–375.

    Google Scholar 

  • Doukidis, G. I. & Paul, R. J. (1991a): SIPDES: A Simulation Program Debugger Using an Expert System.Expert Systems with Applications 1(2): 153–165.

    Google Scholar 

  • Doukidis, G. I. & Paul, R. J. (1992):Artificial Intelligence in Operational Research. Macmillan, Hampshire, UK.

    Google Scholar 

  • Egdorf, H. W. & Roberts, D. J. (1988). Discrete Event Simulation in the Artificial Intelligence Environment. In Uttamsingh, R. (ed.) AI papers,Simulation Series 20(1): 64–68. The Society for Computer Simulation: San Diego, USA.

    Google Scholar 

  • Eilbert, J. L. & Salter, R. M. (1986). Modelling Neural Networks in SCHEME.Simulation 46(5): 193–199.

    Google Scholar 

  • Eldredge, D., McGregor, J. & Summers, M. (1990). Applying the Object-Oriented Paradigm to Discrete Event Simulation Using the C++ Language.Simulation 54(2): 83–91.

    Google Scholar 

  • Eldridge, D., Danielsen, P. & Brown, S. (1991): On the Waterfront — Visually-Interactive Discrete-Event Simulation Helps Planning on the Stanlow and Tranmere Waterfronts. ORInsight 4(1): 6–14.

    Google Scholar 

  • Fagan, L. M. (1980).VM: Representing Time-Dependent Relations in a Medical Setting. Ph.D. Diss., Stanford University, California, USA.

    Google Scholar 

  • Fan, I. S. & Sackett, P. J. (1988). A Prolog Simulator for Interactive Flexible Manufacturing Systems Control.Simulation 50(6): 239–247.

    Google Scholar 

  • Fiddy, E., Bright, J. & Johnston, K. (1991). Visual Interactive Modelling. In Littlechild, S. C. & Shutler, M. F. (eds.)Operations Research in Management, 222–235. Prentice-Hall International: Hemel Hempstead, UK.

    Google Scholar 

  • Flitman, A. M. & Hurrion, R. D. (1987). Linking Procedural Discrete Event Simulation Models with Non-Procedural Expert Systems.Journal of the Operational Research Society 38: 723–733.

    Google Scholar 

  • Fogarty, T. C. (1990). A Prolog Simulation for Combustion Control.Simulation 54(2): 101–109.

    Google Scholar 

  • Ford, D. R. & Schroer, B. J. (1987). An Expert Manufacturing Simulation System.Simulation 48(5): 193–200.

    Google Scholar 

  • Ford, N. Bradbard, D., Cox J. & Ledbetter, W. (1987). Simulation in Corporate Decision Making: Then and Now.Simulation 49(6): 277–282.

    Google Scholar 

  • FORSSIGHT (1983).User's Manual. Business Science Computing Ltd.: Rotherham, UK.

    Google Scholar 

  • Futo, I. (1985). Combined Discrete/Continuous Modelling and Problem Solving. In Birtwistle, G. (ed.)AI, Graphics and Simulation, 23–28. The Society for Computer Simulation: San Diego, USA.

    Google Scholar 

  • Guariso, G., Hitz, M. & Werthner, H. (1989). An Intelligent Simulation Model Generator.Simulation 53(2): 57–66.

    Google Scholar 

  • Haddock, J. (1987). An Expert System Framework Based on a Simulation Generator.Simulation 48(2): 45–53.

    Google Scholar 

  • Hayes-Roth, F., Waterman, D. A. & Lenat, D. B. (1983).Buidling Expert Systems. Addison-Wesley: New York, USA.

    Google Scholar 

  • Heidorn, G. (1972).Natural Language Inputs to a Simulation Programming System. Technical report. Naval Postgraduate School, USA.

    Google Scholar 

  • Henson, T. (ed.) (1988).Artificial Intelligence and Simulation: The Diversity of Applications. The Society for Computer Simulation: San Diego, USA.

    Google Scholar 

  • Henriksen, J. (1983). The Integrated Simulation Environment: Simulation Software of the 1990s.Operations Research 31: 1053–1073.

    Google Scholar 

  • Hill, T. R. & Roberts, S. D. (1987). A Prototype Knowledge-Based Simulation Support System.Simulation 48(4): 152–161.

    Google Scholar 

  • Holder, R. D. & Gittins, R. P. (1989). The Effects of Warship and Replenishment Attrition on War Arsenal Requirements.Journal of the Operational Research Society 40: 167–175.

    Google Scholar 

  • Hollan, J. D., Hutchins, E. L. & Weitzman, L. M. (1987). STEAMER: An Interactive, Inspectable, Simulation-Based Training System. In Kearsley, G. (ed.)Artificial Intelligence and Instruction. Addison Wesley: New York, USA.

    Google Scholar 

  • Holmes, W. (ed.) (1985).Artificial Intelligence and Simulation. The Society for Computer Simulation: San Diego, USA.

    Google Scholar 

  • Hood, S., Mason, K. & Mildren, W. (1990). A Software Stimulator for Knowledge-Based ESM System.Simulation 55(3): 153–161.

    Google Scholar 

  • Hurrion, R. D. (1978). An Investigation of Visual Interactive Simulation Methods Using the Jobshop Scheduling Problem.Journal of the Operational Research Society 29: 1085–1093.

    Google Scholar 

  • Kaminski, J., Cosic, C., Strohm, G., Kepner, J. & Bycura, J. (1989). Knowledge-Based Modelling and Simulation Components. In MacNair, E. A., Musselman, K. J. & Heidelberger, P. (eds.) Proceedings ofThe 1989 Winter Simulation Conference, 222–231. USA.

  • Kerckhoffs, E. J. R., Vansteenkiste, G. C. & Zeigler, B. P. (eds.) (1986). AI Applied to Simulation.Simulation Series 18(1). The Society for Computer Simulation: San Diego, USA.

    Google Scholar 

  • Klahr, P. (1986). Expressibility in ROSS, an Object-Oriented Simulation System. In Kerckhoffs, E. J. R., Vansteenkiste, G. C. & Zeigler, B. P. (eds.) AI applied to Simulation.Simulation Series 18(1). The Society for Computer Simulation: lSan Diego, USA.

    Google Scholar 

  • Knox, P. M. (1989).VS6: A User's Manual. Operational Research Department, The London School of Economics: London, UK.

    Google Scholar 

  • Lirov, Y., Rodin, E. Y., McElhaney, B. G. & Wilbur, L. W. (1988). Artificial Intelligence Modelling of Control Systems.Simulation 50(1): 12–24.

    Google Scholar 

  • Luker, P. A. & Adelsberger, H. H. (eds.) (1986a). Intelligent Simulation Environments.Simulation Series 7(1). The Society for Computer Simulation: San Diego, USA.

    Google Scholar 

  • Luker, P. A. (1986b). Putting Expertise into Modeller. In Luker, P. A. & Adelsberger, H. (eds.) Intelligent Simulation Environments.Simulation Series 17(1): 103–105. The Society for Computer Simulation: San Diego, USA.

    Google Scholar 

  • Manivannan, S. & Pegden, C. (1990). A Rule-Based Simulator for Modelling Just-In-Time Manufacturing Systems (JITSAI).Simulation 55(2): 109–117.

    Google Scholar 

  • Mathewson, S. (1989a). The Implementation of Simulation Languages. In Pidd, M. (ed.)Computer Modelling for Discrete Simulation, 23–56. John Wiley: Chichester, UK.

    Google Scholar 

  • Mathewson, S. (1989b). Simulation Support Environments. In Pidd, M. (ed.)Computer Modelling for Discrete Simulation, 57–100. John Wiley: Chichester, UK.

    Google Scholar 

  • McCarthy, J. & Hayes, P. J. (1969). Some Philosophical Problems from the Standpoint of AI. In Meltzer, B. & Mitchie, D. (eds.)Machine Intelligence, 463–502. Edinburgh University Press: UK.

    Google Scholar 

  • Mellichamp, J. M. & Wahab, A. F. A. (1987). An Expert System for FMS Design.Simulation 48(5): 201–208.

    Google Scholar 

  • Mellichamp, J. M. & Park, Y. H. (1989). A Statistical Expert System for Simulation Analysis.Simulation 52(4): 134–139.

    Google Scholar 

  • Mellichamp, J. & Venkatachalam, A. (1991). An Interactive Debugging Expert System for GPSS/H Simulation Models.Simulation 55(6): 337–344.

    Google Scholar 

  • Murray, K. J. & Sheppard, S. V. (1988). Knowledge-Based Simulation Model Specification.Simulation 50(3): 112–119.

    Google Scholar 

  • Nordbotten, S. (1989). Evaluation of Probabilistic Consultation Systems by Simulation.Simulation 53(6): 279–289.

    Google Scholar 

  • O'Keefe, R. M. (1986). Simulation and Expert Systems — A Taxonomy and Some Examples,Simulation 46(1): 10–16.

    Google Scholar 

  • O'Keefe R. M. (1986). Advisory Systems in Simulation. In Kerckhoffs, E. J. R., Vansteenkiste, G. C. & Zeigler, B. P. (eds.) AI applied to Simulation.Simulation Series 18(1): 73–78. The Society for Computer Simulation: San Diego, USA.

    Google Scholar 

  • Paul, R. J. (1991). Recent Developments in Simulation Modelling.Journal of the Operational Research Society 43: 217–226.

    Google Scholar 

  • Paul, R. J. & Chew, S. (1987). Simulation Modelling Using an Interactive Simulation Program Generator.Journal of the Operational Research Society 38: 735–752.

    Google Scholar 

  • Paul, R. J. & Doukidis, G. I. (1992). Artificial Intelligence and Expert Systems in Simulation Modelling. In Doukidis, G. I. & Paul, R. J. (eds.)Artificial Intelligence in Operational Research. Macmillan: Hampshire, UK.

    Google Scholar 

  • Paul, R. J. (1991). Recent Developments in Simulation Modelling.Journal of the Operational Research Society 43: 217–226.

    Google Scholar 

  • Pidd, M. (1991). Computer Simulation Methods. In Littlechild, S. C. & Shutler, M. F. (eds.)Operations Research in Management, 174–190. Prentice-Hall International: Hernel Hempstead, UK.

    Google Scholar 

  • Pierreval, H. & Ralambondrainy, H. (1990). A Simulation and Learning Technique for Generating Knowledge and Manufacturing Systems Behaviour.Journal of the Operational Research Society 41: 461–474.

    Google Scholar 

  • Pinkowski, B. (1989). CLUSTER: A Simulation-Based Expert.Simulation 52(5): 179–185.

    Google Scholar 

  • Pliske, D. & Halley, M. (1988). Queuing Lab — A Workflow Modelling System for Decision Support. In Uttamsingh, R (ed.) AI Papers.Simulation Series 20(1): 42–46. The Society for Computer Simulation: San Diego, USA.

    Google Scholar 

  • Reddy, Y. V., Fox, M. S. & Husain, N. (1985). Automating the Analysis of Simulations in KBS. In Birtwistle, G. (ed.)AI, Graphics and Simulation, 34–40. The Society for Computer Simulation: San Diego, USA.

    Google Scholar 

  • Rosenhead, J. (1989). Introduction: Old and New Paradigms of Analysis. In Rosenhead, J. (ed.)Relational Analysis for a Problematic World, 1–20. John Wiley: Chichester, UK.

    Google Scholar 

  • Rozenblit, J., Hu, J., Kim, T. & Zeigler, B. (1990). Knowledge-Based Design and Simulation Environments (KBDSE): Foundational Concepts and Implementation.Journal of the Operational Research Society 41: 475–489.

    Google Scholar 

  • Ruiz-Mier, S. & Talavage, J. (1987). A Hybrid Paradigm for Modelling of Complex Systems.Simulation 48(4): 135–141.

    Google Scholar 

  • Russo, M. F., Peskin, R. L. & Kowalski, A. D. (1987). A Prolog-Based Expert System for Modelling with Partial Differential Equations.Simulation 49(4): 150–157.

    Google Scholar 

  • SEE-WHY (1982).User's Manual. Istel Ltd: Oxford, UK.

    Google Scholar 

  • Shannon, R. (1986). Intelligent Simulation Environments. In Luker, P. & Adelsberger, H. (eds.) Intelligent Simulation Environments.Simulation Series 17(1). The Society for Computer Simulation: San Diego, USA.

    Google Scholar 

  • Spelt, P. F., Lyness, E. & DeSaussure G. (1989). Development and Training of a Learning Expert System in an Autonomous Mobile Robot via Simulation.Simulation 53(6): 223–228.

    Google Scholar 

  • Spinelli De Carvalho, R. & Crookes, J. G. (1976). Cellular Simulation.Journal of the Operational Research Society 27: 31–40.

    Google Scholar 

  • Stelzner, M., Dynis, J. & Cummins, F. (1989). The SIMKIT System: Knowledge Based Simulation and Modelling Tools in KEE. In MacNair, E. A., Musselman, K. J. & Heidelberger, P. (eds.) Proceedings ofThe 1989 Winter Simulation Conference, 232–234. USA.

  • Sztrimbely, W. M. & Weymouth, P. J. (1991). Dynamic Process Plant Simulation and Scheduling: An Expert Systems Approach.Simulation 56(3): 175–178.

    Google Scholar 

  • Taylor, R. (1988):An Artificial Intelligence Framework for Experimental Design and Analysis in Discrete Event Simulation. Ph.D. diss., University of Warwick, UK.

    Google Scholar 

  • Tocher, K. D. (1963).The Art of Simulation. Holder and Stoughton Educational Publishers, London, UK.

    Google Scholar 

  • Treu, S. (1988). Designing a ‘Cognizant Interface’ Between the User and the Simulation Software.Simulation 53(6): 227–234.

    Google Scholar 

  • Uttamsingh, R. (ed.) (1988). AI papers.Simulation Series 20(1). The Society for Computer Simulation: San Diego, USA.

    Google Scholar 

  • Uttamsingh, R. & Wildberger, A. (eds.) (1991). Artificial Intelligence and Simulation.Simulation Series 23(4). The Society for Computer Simulation: San Diego, USA.

    Google Scholar 

  • Vaucher, J. G. (1985). Views of Modelling: Comparing the Simulation and AI Approaches. In Birtwistle, G. (ed.)AI, Graphics and Simulation, 3–7. The Society for Computer Simulation, San Diego, USA.

    Google Scholar 

  • Wahl, D. (1986). An Application of Declarative Modelling to Aircraft Fault Isolation and Diagnosis. In Luker, P. A. & Adelsberger, H. H. (eds.) Intelligent Simulation Environments.Simulation Series 17(1). The Society for Computer Simulation, San Diego, USA.

    Google Scholar 

  • Webster, W. & Uttamsingh, R. (eds.) (1990). AI and Simulation: Theory and Applications.Simulation Series 22(3). The Society for Computer Simulation: San Diego, USA.

    Google Scholar 

  • Wildberger, A. M. (1990). AI and Simulation.Simulation 54(2): 64.

    Google Scholar 

  • Zeigler, B. P. (1987). Hierarchical, Modular Discrete-Event Modelling in an Object-Oriented Environment.Simulation 49(5): 219–230.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doukidis, G.I., Angelides, M.C. A framework for Integrating Artificial Intelligence and Simulation. Artif Intell Rev 8, 55–85 (1994). https://doi.org/10.1007/BF00851350

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00851350

Key words

Navigation