[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Time-temperature dependent fracture toughness of PMMA

Part 1

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A toughness-biased Ree-Eyring relationship gives a good description of fracture toughness data of PMMA over a range of temperatures (283 to 353 K) and crack velocities (10−5 to 1 m sec−1). Fracture toughness was measured by Gurney's sector method. The activation energy associated with the equation supports earlier work which suggests that, in the same temperature and velocity range, cracking in PMMA is controlled by craze growth, which is governed by secondary (β) molecular processes. Unstable cracking at moderate velocities (10−2 to 1 m sec−1) seems to be produced by an isothermal/adiabatic transformation; an analysis for the onset of instability is given. At temperatures below 283 K, changes in toughness behaviour are seen, and below 243 K no stable cracking at all was obtained. A discussion is given of various methods of characterizing resistance to cracking, and methods of transforming R(à, T) and K(à, T) data are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. J. J. Benbow, Proc. Phys. Soc. (London) 78 (1961) 970.

    Google Scholar 

  2. N. L. Svensson, ibid 77 (1961) 876.

    Google Scholar 

  3. J. P. Berry, J. Polymer Sci. A1 (1963) 993; see also J. Appl. Phys. 34 (1963) 62.

    Google Scholar 

  4. L. J. Broutman and F. J. McGarry, J. Appl. Polymer Sci. 9 (1965) 589.

    Google Scholar 

  5. P. L. Key, Y. Katz and E. R. Parker, UCRL Report No. 17911, Berkeley, California (1968).

  6. D. I. Vincent and K. V. Gotham, Nature 210 (1966) 1254.

    Google Scholar 

  7. J. G. Williams, J. C. Radon and C. E. Turner, Polymer Eng. Sci. 8 (1968) 130.

    Google Scholar 

  8. G. P. Marshall, L. P. Culver and J. G. Williams, Plastic and Polymers 37 (127) (1969) 75.

    Google Scholar 

  9. P. D. Olear and F. Erdogan, J. Appl. Polymer Sci. 12 (1968) 2563.

    Google Scholar 

  10. L. J. Broutman and T. Kobayashi, AMMRC Report CR 71-14, Army Mater. Mech. Res. Center, Watertown, Massachusetts, 1971; see also Proceedings of the International Conference on Dynamic Crack Propagation (Lehigh Univ.), edited by G. Sih, (Noordhoff, Groningen, 1973) p. 215.

    Google Scholar 

  11. F. A. Johnson and J. C. Radon, Eng. Fract. Mech. 4 (1972) 455.

    Google Scholar 

  12. G. P. Marshall and J. G. Williams, J. Mater. Sci. 8 (1973) 138.

    Google Scholar 

  13. R. F. Boyer, Polymer Eng. Sci. 8 (1968) 161.

    Google Scholar 

  14. C. S. Lee, Ph.D. Dissertation, University of Michigan (1974).

  15. C. Gurney and J. Hunt, Proc. Roy. Soc. (London) A229 (1967) 508.

    Google Scholar 

  16. American Society for Testing and Materials, Special Tech. Pub. No. 463, 1970.

  17. G. P. Marshall, L. E. Culver and J. G. Williams, Proc. Roy. Soc. (London) A319 (1970) 165.

    Google Scholar 

  18. R. P. Kambour, General Electric Report No. 72 CRD 285, Schenectady, New York (1972).

  19. M. J. Doyle, A. Maranci, E. Orowan and S. T. Stork, Proc. Roy. Soc. (London) A329 (1972) 137.

    Google Scholar 

  20. J. Heijboer, J. Polymer Sci. C16 (1968) 3755.

    Google Scholar 

  21. J. R. McLaughlin and A. V. Tobolsky, J. Colloid. Sci. 7 (1962) 555.

    Google Scholar 

  22. J. A. Sauer and C. C. Hsiao, ASME Trans. 75 (1953) 895.

    Google Scholar 

  23. V. R. Regel, J. Tech. Phys. (USSR) 26 (1956) 359.

    Google Scholar 

  24. M. Higuchi, Proceedings of the First International Conference on Fracture, Sendai, Japan, (1966) p. 1211.

  25. S. N. Zhurkov, Int. J. Fract. Mech. 1 (1965) 311.

    Google Scholar 

  26. K. Schönert, H. Umhauer and W. Klemm, Proceedings of the Second International Conference on Fracture, Brighton, England (1969) p. 474.

  27. J. A. Kies and A. B. J. Clark, Proceedings of the Second International Conference on Fracture, Brighton, England (1969) p. 483.

  28. J. G. Williams, Int. J. Fract. Mech. 8 (4) (1972) 393.

    Google Scholar 

  29. A. K. Green and P. L. Pratt, Eng. Fract. Mech. 6 (1974) 71.

    Google Scholar 

  30. J. G. Williams and G. P. Marshall, Polymer Letters 15 (1974) 251.

    Google Scholar 

  31. C. Gurney and Y. W. Mai, Eng. Fract. Mech. 4 (1972) 853.

    Google Scholar 

  32. Y. W. Mai, private communication.

  33. P. G. Fox and K. N. G. Fuller, Nature 234 (1971) 13.

    Google Scholar 

  34. R. Weichert and K. Schönert, J. Mech. Phys. Solids 22 (1974) 127.

    Google Scholar 

  35. C. Gurney and K. M. Ngan, Proc. Roy. Soc. (London) A325 (1971) 207.

    Google Scholar 

  36. A. G. Atkins, C. S. Lee and R. M. Caddell, J. Mater. Sci. 10 (1975) 1394.

    Google Scholar 

  37. G. P. Marshall, L. H. Coutts and J. G. Williams, ibid 9 (1974) 1409.

    Google Scholar 

  38. R. A. W. Fraser and I. M. Ward, ibid 9 (1974) 1624.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atkins, A.G., Lee, C.S. & Caddell, R.M. Time-temperature dependent fracture toughness of PMMA. J Mater Sci 10, 1381–1393 (1975). https://doi.org/10.1007/BF00540829

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00540829

Keywords

Navigation