Abstract
Plasmid biology has become an important area of investigation in dairy starter cultures since it now appears that some properties, vital for successful milk fermentations, are coded by genes located on plasmid DNA. Some of these metabolic properties observed in lactic streptococci have been clearly established as being plasmid-mediated. Examples would be lactose utilization and in Streptococcus lactis subsp. diacetylactis the ability to produce a bacteriocin-like substance. Phenotypic and physical evidence for plasmid linkage has been obtained for other traits such as citrate, sucrose, galactose, glucose, mannose, and xylose utilization, proteinase activity, modification/restriction systems, as well as for nisin production. Further genetic evidence is now needed to confirm plasmid association to these properties. For some characteristics the association with plasmids is highly speculative and is solely based on the phenotypic loss of a metabolic property. In this category would be sensitivity to agglutinins, sensitivity to the lactoperoxidase-thiocyanate-hydrogen peroxide inhibitory system, arginine hydrolysis, and slime production. Other properties which appear plasmid-mediated in lactic streptococci and which will be discussed include inorganic ion resistance, drug resistance, and diplococcin production.
Similar content being viewed by others
References
Anderson, D. G. and McKay, L. L. 1977. Plasmids, loss of lactose metabolism, and appearance of partial and full lactose-fermenting revertants in Streptococcus cremoris B1.—J. Bacteriol. 129: 367–377.
Arber, W. and Linn, S. 1969. DNA modification and restriction.—Ann. Rev. Biochem. 38: 467–500.
Auclair, J. and Vassal, Y. 1963. Occurrence of variants sensitive to agglutinins and to lactoperoxidase in a lactenin-resistant strain of Streptococcus lactis.—J. Dairy Res. 30: 345–349.
Bissett, D. L. and Anderson, R. L. 1974. Lactose and d-galactose metabolism in group N streptococci: presence of enzymes for both the d-galactose-1-phosphate and d-tagatose 6-phosphate pathways.—J. Bacteriol. 117: 318–320.
Citti, J. E., Sandine, W. E. and Elliker, P. R. 1965. Comparison of slow and fast acid-producing Streptococcus lactis.—J. Dairy Sci. 48: 14–18.
Collins, E. B. and Harvey, R. J. 1962. Failure in the production of citrate permease by Streptococcus diacetilactis.—J. Dairy Sci. 45: 32–35.
Cords, B. R. and McKay, L. L. 1974. Characterization of lactose-fermenting revertants from lactose-negative Streptococcus lactis C2 mutants.—J. Bacteriol. 119: 830–839.
Davey, G. P. and Pearce, L. E. 1982. Production of diplococcin by Streptococcus cremoris and its transfer to nonproducing group N streptococci. p. 221–224. In D. Schlessinger (ed.), Microbiology-1982.—American Society for Microbiology, Washington, D. C.
Davies, F. L. and Gasson, M. J. 1981. Reviews of the progress of dairy science: genetics of lactic acid bacteria.—J. Dairy Res. 48: 363–376.
Demko, G. M., Blanton, S. J. B. and Benoit, R. E. 1972. Heterofermentative carbohydrate metabolism of lactose-impaired mutants of Streptococcus lactis.—J. Bacteriol. 112: 1335–1345.
Dobrzanski, W. T., Bardowski, J., Kozak, W. and Zajdel, J. 1982. Lactostrepcins: bacteriocins of lactic streptococci. p. 225–229. In D. Schlessinger (ed.), Microbiology-1982.—American Society for Microbiology, Washington, D. C.
Efstathiou, J. D. and McKay, L. L. 1977. Inorganic salts resistance associated with a lactosefermenting plasmid in Streptococcus lactis.—J. Bacteriol. 130: 257–265.
Exterkate, F. A. 1975. An introductory study of the proteolytic system of Streptococcus cremoris strain HP.—Neth. Milk Dairy J. 29: 303–318.
Exterkate, F. A. 1976. The proteolytic system of a slow lactic-acid-producing variant of Streptococcus cremoris HP.—Neth. Milk Dairy J. 30: 3–8.
Forsén, R. and Pakkila, M. 1979. Studies on slime forming group N Streptococcus strains V. Electrophoretic characterization of cell proteins associated with the particulate fraction.—Acta Univ. Oul. A 78, Biochem. 22: 1–13.
Forsén, R., Raunio, V. and Myllymaa, R. 1973. Studies on slime forming group N Streptococcus strains. I. Differentiation between some lactic Streptococcus strains by polyacrylamide gel electrophoresis of soluble cell proteins.—Acta Univ. Oul. A 12, Biochem. 3: 1–19.
Fuchs, P. G., Zajdel, J. and Dobrzański, W. T. 1975. Possible plasmid nature of the determinant for production of the antibiotic nisin in some strains of Streptococcus lactis. — J. Gen. Microbiol. 88: 189–192.
Garvie, E. I. and Mabbitt, L. A. 1956. Acid production in milk by starter cultures — the effect of peptone and other stimulatory substances. — J. Dairy Res. 23: 305–314.
Gasson, M. J. 1982. Identification of the lactose plasmid in Streptococcus lactis 712. p. 217–220 In D. Schlessinger (ed.), Microbiology-1982 — American Society for Microbiology, Washington, D. C.
Gasson, M. J. and Davies, F. L. 1980. High-frequency conjugation associated with Streptococcus lactis donor cell aggregation. — J. Bacteriol. 143: 1260–1264.
Harriman, L. A. and Hammer, B. W. 1931. Variation in the coagulation and proteolysis of milk by Streptococcus lactis. — J. Dairy Sci. 14: 40–49.
Hengstenberg, W., Schrecker, O., Stein, R. and Weil, R. 1976. Lactose transport and metabolism in Staphylococcus aureus. p. 203–215. In J. Jeliaszewicz (ed.), Staphylococci and Staphylococcal Diseases. Proc. 3rd Intern. Symp. on Staphylococci and Staphylococcal Infections. — Gustav Fischer Verlag, Stuttgart.
Hirsch, A. 1951. Growth and nisin production by a strain of Streptococcus lactis. — J. Gen. Microbiol. 5: 208–221.
Hunter, G. J. E. 1939. Examples of variation within pure cultures of Streptococcus cremoris. —J. Dairy Res. 10: 464–470.
Kastli, P. O. 1967. Recent results of research work in the Swiss federal experimental station for the dairy industry. — J. Soc. Dairy Technol. 20: 6.
Kempler, G. M. and McKay, L. L. 1979a. Characterization of plasmid deoxyribonucleic acid in Streptococcus lactis subsp. diacetylactis: evidence for plasmid-linked citrate utilization. — Appl. Environ. Microbiol. 37: 316–323.
Kempler, G. M. and McKay, L. L. 1979b. Genetic evidence for plasmid-linked lactose metabolism in Streptococcus lactis subsp. diacetylactis. — Appl. Environ. Microbiol. 37: 1041–1043.
Kempler, G. M. and McKay, L. L. 1981. Biochemistry and genetics of citrate utilization in Streptococcus lactis subsp. diacetylactis. — J. Dairy Sci. 64: 1527–1539.
Klaenhammer, T. R., McKay, L. L. and Baldwin, K. A. 1978. Improved lysis of group N streptococci for isolation and rapid characterization of plasmid deoxyribonucleic acid. — Appl. Environ. Microbiol. 35: 592–600.
Kneteman, A. 1952. Enrichment and isolation of Streptococcus citrophilus van Beynum et Pette. — Antonie van Leeuwenhoek 18: 275–290.
Kondo, J. K. and McKay, L. L. 1982. Transformation of Streptococcus lactis protoplasts by plasmid DNA. — Appl. Environ. Microbiol. 43: 1213–1215.
Kozak, W., Rajchert-Trzpil, M. and Dobrzański, W. T. 1974. The effect of proflavin, ethidium bromide and an elevated temperature on the appearance of nisin-negative clones in nisin-producing strains of Streptococcus lactis. — J. Gen. Microbiol. 83: 295–302.
Kuhl, S. A., Larsen, L. D. and McKay, L. L. 1979. Plasmid profiles of lactose-negative and proteinase-deficient mutants of Streptococcus lactis C10, ML3, and M18. — Appl. Environ. Microbiol. 37: 1193–1195.
Larsen, L. D. and McKay, L. L. 1978. Isolation and characterization of plasmid DNA in Streptococcus cremoris. — Appl. Environ. Microbiol. 36: 944–952.
Lawrence, R. C., Thomas, T. D. and Terzaghi, B. E. 1976. Reviews of the progress of dairy science: cheese starters. — J. Dairy Res. 43: 141–193.
LeBlanc, D. J., Crow, V. L. and Lee, L. N. 1980. Plasmid mediated carbohydrate catabolic enzymes among strains of Streptococcus lactis. p. 31–41. In C. Stuttard and K. R. Rozee (eds), Plasmids and Transposons: Environmental Effects and Maintenance Mechanisms. — Academic Press, New York.
LeBlanc, D. J., Crow, V. L., Lee, L. N. and Garon, C. F. 1979. Influence of the lactose plasmid on the metabolism of galactose by Streptococcus lactis. — J. Bacteriol. 137: 878–884.
Limsowtin, G. K. Y., Heap, H. A. and Lawrence, R. C. 1978. Heterogeneity among strains of lactic streptococci. — N. Z. J. Dairy Sci. Technol. 13: 1–8.
McKay, L., Miller III, A., Sandine, W. E. and Elliker, P. R. 1970. Mechanisms of lactose utilization by lactic acid streptococci: enzymatic and genetic analysis. — J. Bacteriol. 102: 804–809.
McKay, L. L. 1982. Regulation of lactose metabolism in dairy streptococci. p. 153–182. In R. Davies (ed.), Developments in Food Micribiology-1. — Applied Science Publishers Ltd, Essex.
McKay, L. L. and Baldwin, K. A. 1974. Simultaneous loss of proteinase- and lactose-utilizing enzyme activities in Streptococcus lactis and reversal of loss by transduction. — Appl. Microbiol. 28: 342–346.
McKay, L. L. and Baldwin, K. A. 1975. Plasmid distribution and evidence for a proteinase plasmid in Streptococcus lactis C2. — Appl. Microbiol. 29: 546–548.
McKay, L. L. and Baldwin, K. A. 1979. Stabilization of lactose metabolism in Streptococcus lactis C2. — Appl. Environ. Microbiol. 36: 360–367.
McKay, L. L. and Baldwin, K. A. 1982. Characterization and transferability of plasmids among group N streptococci. p. 210–212. In D. Schlessinger (ed.), Microbiology-1982. — American Society for Microbiology, Washington, D. C.
McKay, L. L., Baldwin, K. A. and Efstathiou, J. D. 1976. Transductional evidence for plasmid linkage of lactose metabolism in Streptococcus lactis C2. — Appl. Environ. Microbiol. 32: 45–52.
McKay, L. L., Baldwin, K. A. and Walsh, P. M. 1980. Conjugal transfer of genetic information in group N streptococci. — Appl. Environ. Microbiol. 40: 84–91.
McKay, L. L., Baldwin, K. A. and Zottola, E. A. 1972. Loss of lactose metabolism in lactic streptococci. — Appl. Microbiol 23: 1090–1096.
Mostert, J. F. 1976. The ecology and taxonomy of Streptococcus diacetilactis. p. 118–119. In J. Lowes (ed.), Agricultural Research. — Department of Technical Services, Pretoria.
Okulitch, O. 1939. Microbic dissociation of lactic acid streptococci. — Can. J. Res. Ser. B 17: 171–177.
Okulitch, O. and Eagles, B. A. 1936. Cheese ripening studies. The influence of the configurational relations of the hexoses on the sugar fermenting abilities of lactic acid streptococci. — Can. J. Res. Ser. B 14: 320–324.
Otto, R., De Vos, W. M. and Gavrieli, J. 1982. Plasmid DNA in Streptococcus cremoris Wg2: influence of pH on selection in chemostats of a variant lacking a protease plasmid. — Appl. Environ. Microbiol. 43: 1272–1277.
Park, Y. H. and McKay, L. L. 1982. Distinct galactose phosphoenolpyruvate-dependent phosphotransferase system in Streptococcus lactis. — J. Bacteriol. 149: 420–425.
Pearce, L. E. 1970. Slow acid variants of lactic streptococci. — Proc. XVIII Intern. Dairy Congr., Sydney, Brief Commun. Vol. 1E, p. 118.
Pearce, L. E. 1978. The effect of host-controlled modification on the replication rate of a lactic streptococcal bacteriophage. — N. Z. J. Dairy Sci. Technol. 13: 166–171.
Pechmann, H. and Teuber, M. 1980. Plasmid pattern of group N (lactic) streptococci. — Zbl. Bakt. Hyg., I. Abt. orig. C 1: 133–136.
Reiter, B. 1963. Some thoughts on cheese starters. — J. Soc. Dairy Technol. 26: 3–15.
Sanders, M. E. and Klaenhammer, T. R. 1980. Restriction and modification in group N streptococci: effect of heat on development of modified lytic bacteriophage. — Appl. Environ. Microbiol. 40: 500–506.
Sanders, M. E. and Klaenhammer, T. R. 1981. Evidence for plasmid linkage of restriction and modification in Streptococcus cremoris KH. — Appl. Environ. Microbiol. 42: 944–950.
Sherman, J. M. and Hussong, R. V. 1937. Fermentative variability among substrains of Streptococcus cremoris and Streptococcus lactis obtained from pure cultures. — J. Dairy Sci. 20: 101–103.
Snook, R. J. and McKay, L. L. 1981. Conjugal transfer of lactose-fermenting ability among Streptococcus cremoris and Streptococcus lactis strains. — Appl. Environ. Microbiol. 42: 904–911.
Snook, R. J., McKay, L. L. and Ahlstrand, G. G. 1981. Transduction of lactose metabolism by Streptococcus cremoris C3 temperate phage. — Appl. Environ. Microbiol. 42: 897–903.
St. Martin, E. J., Lee, L. N. and LeBlanc, D. J. 1982. Genetic analysis of carbohydrate metabolism in streptococci. p. 232–233. In D. Schlessinger (ed.), Microbiology-1982. — American Society for Microbiology, Washington, D. C.
Thomas, T. D., Jarvis, B. D. W. and Skipper, N. A. 1974. Localization of proteinase(s) near the cell surface of Streptococcus lactis. — J. Bacteriol. 118: 329–333.
Thompson, J. 1980. Galactose transport systems in Streptococcus lactis. — J. Bacteriol. 144: 683–691.
Turner, N., Sandine, W. E., Elliker, P. R. and Day, E. A. 1963. Use of tetrazolium dyes in an agar medium for differentiation of Streptococcus lactis and Streptococcus cremoris. — J. Dairy Sci. 46: 380–385.
Walsh, P. M. and McKay, L. L. 1981. Recombinant plasmid associated with cell aggregation and high-frequency conjugation in Streptococcus lactis ML3. — J. Bacteriol. 146: 937–944.
Westhoff, D. C., Cowman, R. A. and Speck, M. L. 1971. Isolation and partial characterization of a particulate proteinase from a slow acid producing mutant of Streptococcus lactis. — J. Dairy Sci. 54: 1253–1258.
Yawger, E. S. and Sherman, J. M. 1937. Variants of Streptococcus lactis which do not ferment lactose. — J. Dairy Sci. 20: 83–86.
Author information
Authors and Affiliations
Additional information
This is published as paper No. 13273 of the Scientific Journal Series of the Minnesota Agricultural Experiment Station.