[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Contaminated food and uptake of heavy metals by fish: a review and a proposal for further research

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Summary

1. The uptake of heavy metals via the alimentary tract can be an important factor for the metal budget of fish. 2. Concepts such as biomagnification, bioaccumulation, biotransference, or concentration factors, convey little information about the real threat originating from heavy metals in an aquatic food chain. 3. In polluted aquatic ecosystems the transfer of metals through food chains can be high enough to bring about harmful concentrations in the tissues of fish. This relationship is called the food chain effect. 4. Two kinds of ecological factors influence the food chain effect: firstly, high levels of contamination of the food, and, secondly, the reduction of species diversity. When susceptible species are eliminated, metal-tolerant food organisms may become dominant. Their tolerance may be based either on their ability to accumulate excessive amounts of metals or to exclude heavy metals from the tissues. These two strategies represent feedback mechanisms which may enhance or weaken the food chain effect. 5. It is concluded that future investigations on transference of heavy metals to fish must take into more careful consideration the specific ecological situation of a given environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abo-Rady MDK (1980) Makrophytische Wasserpflanzen als Bioindikatoren für die Schwermetallbelastung der oberen Leine. Arch Hydrobiol 89 (3):387–404

    Google Scholar 

  • Amiard JC, Amiard-Triquet C (1979) Distribution of cobalt 60 in a mollusc, a crustacean and a freshwater teleost: Variations as a function of the source of pollution and during elimination. Environ Pollut 20:199–213

    Google Scholar 

  • Amiard-Triquet C (1979) Modalites de la contamination de deux chaines trophiques dulcaquicoles par le cobalt 60. Wat. Air Soil Poll 12:155–170

    Google Scholar 

  • Amiard-Triquet C, Saas A (1979) Modalites de la contamination de deux chaines trophiques dulcaquicoles par le cobalt 60. II. Contamination simultanee des organismes par l' eau et la nourriture. Water, Air and Soil Pollut 12:141–153

    Google Scholar 

  • Anderson PD, Spear PA (1980) Copper pharmacokinetics in fish gills. I. Kinetics in pumpkinseed sunfish, Lepomis gibbosus, of different body size. Wat Res 14:1101–1105

    Google Scholar 

  • Anderson RV, Vinikour WS, Brower JE (1978) The distribution of cadmium, copper, lead and zinc in the biota of 2 freshwater sites with different trace metal inputs. Holarct Ecol 1:377–384

    Google Scholar 

  • Aoyama I, Inoue Yoshinobu, Inoue Yoriteru (1978) Experimental study on the concentration process of trace element through a food chain from the viewpoint of nutrition ecology. Wat Res 12 (10):831–836

    Google Scholar 

  • Bacini P, Suter U (1979) MELIMEX, an experimental heavy metal pollution study: Chemical speciation and biological availability of copper in lake water. Schweiz Z Hydrol 41:291–301

    Google Scholar 

  • Baker JTP (1969) Histological and electron microscopical observations in copper poisoning in the winter flounder (Pseudopleuronectes americanus). J Fish Res Bd Can 26:2785–2793

    Google Scholar 

  • Bell AV (1976) Waste controls at base metal mines. Environ Sci Technol 10:130–135

    Google Scholar 

  • Bernhard M, Andreae MO (1984) Transport of trace metals in marine food chains. In: Changing Metal Cycles and Human Health, Nriagu JO (ed) Dahlem Konferenzen 1984, Springer, Berlin Heidelberg New York, pp 143–167

    Google Scholar 

  • Bernhard M, George SG (1986) Importance of chemical species in uptake, loss, and toxicity of elements for marine organisms. In: The importance of chemical “speciation” in environmental processes, Bernhard M, Brinckman FE, Sadler PJ (eds) Dahlem Konferenzen 1986, Springer, Berlin Heidelberg New York, pp 275–299

    Google Scholar 

  • Borgmann U (1983) Metal speciation and toxicity of free metal ions to aquatic biota. In: Aquatic Toxicology, Nriagu JO (ed) Wiley, New York 1983, pp 47–72

    Google Scholar 

  • Bouquegneau JM, Martoja M, Truchet M (1984) Heavy metal storage in marine animals under various environmental conditions. In: Toxins, drugs, and pollutants in marine animals, Bolis (eds), Springer, Berlin Heidelberg New York, pp 147–160

    Google Scholar 

  • Brown BE (1977) Uptake of copper and lead by a metal tolerant isopod Asellus meridianus. Rac. Freshwat Biol 7 (3):235–244

    Google Scholar 

  • Brown BE (1978) Lead detoxification by a copper-tolerant isopod. Nature 276:388

    Google Scholar 

  • Brown VM, Shaw TL, Shurben DG (1974) Aspects of water quality and toxicity of copper to rainbow trout. Wat Res 8:797–803

    Google Scholar 

  • Burmeister E-G (1980) Die aquatische Makrofauna des Breiniger Berges unter besonderer Berücksichtigung des Einflusses von Schwermetallen auf das Arteninventar. Spixiana 3 (1):59–90

    Google Scholar 

  • Calamari D, Marchetti R, Vailatie G (1980) Influence of water hardness on cadmium toxicity to Salmo gairdneri Richardson. Wat Res 14:1421–1426

    Google Scholar 

  • Canton JH, Slooff W (1982) Toxicity and accumulation studies of cadmium (Cd2+) with freshwater organisms of different trophic levels. Ecotoxicol Eniron Saf 6:113–128

    Google Scholar 

  • Chakoumakos C, Russo RC, Thurston RV (1979) Toxicity of copper to cutthroat trout (Salmo clarki) under different conditions of alkalinity, pH, and hardness. Environ Sci Technol 13:213–219

    Google Scholar 

  • Chartier MM (1974) Osmoregulation et proteine liant le calcium (CaBP) des muqueses intestinales et branchiales de la truite arc-en-ciel, Salmo gairdneri. C r Acad Sci Paris (279D):927–930

    Google Scholar 

  • Collvin L (1984) Uptake of copper in the gills and liver of perch, Perca fluviatilis. Ecol Bull Stockholm 36:57–61

    Google Scholar 

  • Czarnezki JM (1985) Accumulation of lead in fish from Missouri streams impacted by lead mining. Bull Environm Contam Toxicol 34:736–745

    Google Scholar 

  • Czuba M, Mortimer DC (1980) Stability of methylmercury and inorganic mercury in aquatic plants (Elodea densa). Can J Bot 58 (3):316–320

    Google Scholar 

  • Dallinger R (1986) Schwermetalle in limnischen Nahrungsketten. Öst Fischerei 39 (10):281–293

    Google Scholar 

  • Dallinger R, Kautzky H (1985a) The passage of Cu, Zn, Cd, and Pb along a short food chain into the fish Salmo gairdneri. Int Conference of heavy metals in the Environment, Athens 1985. Conference proceedings, vol. 1, pp 694–696

    Google Scholar 

  • Dallinger R, Kautzky H (1985b) The importance of contaminated food for the uptake of heavy metals by rainbow trout (Salmo gairdneri): A field study. Oecologia (Berlin) 67:82–89

    Google Scholar 

  • Dallinger R, Prosi F (1986) Fractionation and identification of heavy metals in hepatopancreas of terrestrial isopods: evidence of lysosomal accumulation and absence of cadmium-thionein. In: Velthuis HHW (ed), Third European Congress of Entomology, Amsterdam, Nederlandse Entomologische Vereniging 1986. Congress proceedings, Part 2, p 328

  • Delisle CE, Hummel B, Wheeland KG (1975) Uptake of heavy metals from sediment by fish. In: TC Hutchinson (ed): International conference on heavy metals in the environment, Toronto, Ontario 1975, p 821

  • Eddy F, Fraser JE (1982) Sialic acid and mucus production in rainbow trout (Salmo gairdneri Richardson) in response to zinc and seawater. Comp Biochem Physiol 73C, 357–359

    Google Scholar 

  • Edgren M, Notter M (1980) Cadmium uptake by fingerlings of perch (Perca fluviatilis) studied by Cd-115m at two different temperatures. Bull Environm Contam Toxicol 24:647–651

    Google Scholar 

  • Eisler R, Zaroogian GE, Hennekey RJ (1972) Cadmium uptake by marine organisms: J Fish Res Bd Canada 29:1367–1369

    Google Scholar 

  • Enk M, Mathis BJ (1977) Distribution of cadmium and lead in a stream ecosystem. Hydrobiologia 52 (2–3):153–158

    Google Scholar 

  • Fenwick JC, So YP (1974) A perfusion study of the effect of stanniectomy on the net influx of calcium-45 across an isolated eel gill. J exp Zool 188:125–131

    Google Scholar 

  • Ferard JF, Jouany JM, Truhaut R, Vasseur P (1983) Accumulation of cadmium in a freshwater food chain experimental model. Ecoltoxic Environment Saf 7:43–52

    Google Scholar 

  • Förstner U, Müller G (1974) Schwermetalle in flüssen und Seen als Ausdruck der Umweltverschmutzung. Springer, Berlin Heidelberg New York, p 225

    Google Scholar 

  • Förstner U, Wittman GTW (1981) Metal pollution in the aquatic environment. Springer, Berlin Heidelberg New York, 2nd ed. p 486

    Google Scholar 

  • Francis PC, Birge WJ, Black JA (1984) Effects of cadmium-enriched sediment on fish and amphibian embryo-larval stages. Ecotoxic Environm Saf 8:378–387

    Google Scholar 

  • Gächter R, Davis JS (1978) Regulation of copper availability to phytoplankton by macromolecules in Lake Water. Envir Sci Technol 12:1416–1421

    Google Scholar 

  • Gächter R, Geiger W (1979) MELIMEX, an experimental heavy metal polution study: Behaviour of heavy metals in an aquatic food chain. Schweiz Z Hydrol 41 (2):277–290

    Google Scholar 

  • Gardiner J (1974) The chemistry of cadmium in natural water. II. The adsorption of cadmium in river muds and naturally occuring solids. Wat Res 8:157–171

    Google Scholar 

  • Giesy JP, Wiener JG (1977) Frequency distributions of trace metals in five freshwater fishes. Trans Am Fish Soc 106:393

    Google Scholar 

  • Giesy JP Jr, Leversee GJ, Williams DR (1977) Effects of naturally occurring aquatic organic fractions on cadmium toxicity to Simocephalus serrulatus (Daphnidae) and Gambusia affinis (Poeciliidae). Wat Res 11:1013–1020

    Google Scholar 

  • Goldwater LJ (1971) Mercury in the environment. Sci Am 224 (5):15–21

    Google Scholar 

  • Haider G (1964) Zur Kenntnis von Schwermetallvergiftungen bei Fischen I. Bleivergiftung bei Regenborgenforellen (Salmo gairdneri Rich.) und ihr Nachweis. Z angew Zool 51:347–368

    Google Scholar 

  • Håkanson L (1980) The quantitative impact of pH, bioproduction and Hg-contamination on the Hg-content of fish (pike). Env Poll 18:285–304

    Google Scholar 

  • Håkanson L (1984) Metals in fish and sediments from the river Kolbäcksan water system, Sweden. Arch Hydrobiol 101 (3):373–400

    Google Scholar 

  • Hamdy MK, Prabhu NV (1979) Behavior of mercury in biosystems. III. Biotransference of mercury through food chains. Bull Environm Contam Toxicol 21:170–178

    Google Scholar 

  • Hardisty MW, Huggins RJ, Kartar S, Sainsbury M (1974) Ecological implications of heavy metal in fish from the Severn Estuary. Mar Poll Bull 5:12–15

    Google Scholar 

  • Heyraud M, Cherry RD (1979) Polonium-210 and lead-210 in marine food chains. Mar Biol 52:227–236

    Google Scholar 

  • Hirose K, Sugimura Y (1985) Role of metal-organic complexes in the marine environment. Mar Chem 16:239–247

    Google Scholar 

  • Hodson PV, Blunt BR, Spry DJ (1978) Chronic toxicity of waterborne and dietary lead to rainbow trout (Salmo gairdneri) in lake Ontario water. Wat Res 12:869–878

    Google Scholar 

  • Hoss DE (1964) Accumulation of zinc-65 by flounder of the genus Paralychthys. Trans Am Fish Soc 93:364–368

    Google Scholar 

  • Hughes GM, Flos R (1978) Zinc content of the gills of rainbow trout (S. gairdneri) after treatment with zinc solutions under normoxic and hypoxic conditions. J Fish Biol 13:717–728

    Google Scholar 

  • Jackim E, Hamlin JM, Sonis S (1970) Effect of metal poisoning on five liver enzymes in the killyfish (Fundulus heteroclistus). J Fish Res Bd Can 27:383–390

    Google Scholar 

  • Jacobs G (1978) Über Aufnahme und Anreicherung von Schwermetallsalzen (Hg, Cd) aus Futtermitteln in Regenbogenforellen. I. Mitteilung. Z Tierphysiol, Tierernähr, Futtermittelkd 40:274–284

    Google Scholar 

  • Jarvinen AW, Hoffman MJ, Thorslund TW, (1977) Long-term toxic effects of DDT food and water exposure on fathead minnows (Pimephales promelas). J Fish Res Board Can 34:2089–2103

    Google Scholar 

  • Jeng SS, Sun LT (1981) Effects of dietary zine levels on zine concentrations in tissues of common carp. J Nutrition 111 (1): 134–140

    Google Scholar 

  • Jensen S, Jernelöv A, (1969) Biological methylation of mercury in aquatic organisms. Nature (London) 220: 753–754

    Google Scholar 

  • Jernelöv A, Lann H (1971) Mercury accumulation in food chains. Oikos 22:403–406

    Google Scholar 

  • Karlsson-Norrgren I., Runn P, Haux C, Förlin L (1985) Cadmiuminduced changes in gill morphology of zebrafish, Brachydanio rerio (Hamilton-Buchanan), and rainbow trout, Salmo gairdneri Richardson. J Fish Biol 27:81–95

    Google Scholar 

  • Kester DR, Andreae MO, Bernhard M, Branica M, Duinker J, George SG, Lund W, Luoma SN, Tramier B, Velapoldie RA, Vestal ML (1986) Chemical species in marine and estuarine systems. In: The importance of chemical “specieation” in environmental processes, Bernhard M, Brinckman FE, Sadler PJ (eds) Dahlem Konferenzen. Springer, Berlin Heidelberg New York, pp 275–299

    Google Scholar 

  • Kinkade ML, Erdman HE (1975) The influence of hardness components (Ca 2+ and Mg 2+) in water on the uptake and concentration of cadmium in a simulated freshwater ecosystem. Environ Res 10:308–313

    Google Scholar 

  • Knauer GA, Martin JH (1972) Mercury in a pelagic food chain. Limnol Oceanogr 17:868–876

    Google Scholar 

  • Knox D, Cowey CB, Adron JW (1982) Effects of dietary copper and copper: zinc ratio on rainbow trout Salmo gairdneri. Aquaculture 27:111–119

    Google Scholar 

  • Kumada H, Kimura S, Yokote M, Matida Y (1973) Acute and chronic toxicity, uptake and retention of cadmium in freshwater organisms. Bull Freshwat Fish Res Lab 22:157–165

    Google Scholar 

  • Lang C, Lang-Dobler B (1979) The chemical environment of tubificid and lumbriculid worms according to the pollution level of the sediment. Hydrobiologia 65 (3):273–282

    Google Scholar 

  • Leland HV, McNurney JM (1974) Lead transport in a river ecosystem. Proc. Int. Conf. Transp. Persist. Chem. Aquatic Ecosyst., Ottawa, III, pp 17–23

  • Lock RAC (1975) Uptake of methylmercury by aquatic organisms from water and food. In: Sublethal effects of toxic chemicals on aquatic animals, Kroeman JH, Striks JJTWH (eds) Elsevier, Amsterdam, pp 61–79

    Google Scholar 

  • Lock RAC, Van Overbeeke AP (1981) Effects of mercuric chloride and methylmercuric chloride on mucus secretion in rainbow trout (Salmo gairdneri Richardson). Comp Biochem Physiol 69C:67–73

    Google Scholar 

  • Loring DH, Prosi F (1986) Cadmium and lead cycling between water, sediment, and biota in an artificially contaminated mud flat on Borkum (FRG). Wat Sci Tech Vol 18, Plymouth, pp 131–139

    Google Scholar 

  • Manthey G, Brügmann L, Berge H (1979) Zu Fragen der Kadmiumkontamination in der Nahrungskette: Wasser-Plankton-Fisch in der Ostsee. In: Kadmium-Symposium. Wissenschaftliche Beiträge der Friedrich Schiller Universität Jena. Jena 1979, pp 202–206

  • Mathers RA, Johansen PH (1985) The effects of feeding ecology on mercury accumulation in walleye (Stizostedion vitreum) and pike (Esox lucius) in Lake Simcoe. Can J Zool 63:2006–2012

    Google Scholar 

  • Mathis BJ, Cummings TF (1973) Selected metals in sediments, water, and biota in the Illinois River. J Wat Poll Contr Fed 45:1573–1583

    Google Scholar 

  • Mathis BJ, Kevern NR (1975) Distribution of mercury, cadmium, lead and thallium in a eutrophic lake. Hydrobiol 46 (2–3):207–222

    Google Scholar 

  • Mathis BJ, Cummings TF, Gower M, Taylor M, King C (1979) Dynamics of manganese, cadmium, and lead in experimental power plant ponds. Hydrobiologia 67 (3):197–206

    Google Scholar 

  • McCarty CS, Henry JAC, Houston AH (1978) Toxicity of cadmium to goldfisch Carassius auratus, in hard and soft water. J Fish Res Bd Can 35:35–42

    Google Scholar 

  • McFarlance GA, Franzin WG (1980) An enumeration of Cd, Cu, and Hg concentrations in livers of northern pike, Esox lucius, and white sucker, Catostomus comersoni, from five lakes near a base metal smelter at Flin Flon, Manitoba. Can J Fish Aquat Sci 37:1573

    Google Scholar 

  • McIntosh AW, Shephard BK, Mayes RA, Atchison GJ, Nelson DW (1978) Some aspects of sediments distribution and macrophyte cycling of heavy metals in a contaminated lake. J Environm Qual 7 (3):301–305

    Google Scholar 

  • Millero FJ (1977) Thermodynamic models for the state of metal ions in seawater. In: The Sea, Goldberg ED (eds), vol. 6. Wiley, New York, pp 653–693

    Google Scholar 

  • Mills CF (1986) The influence of chemical species on the absorption and physiological utilization of trace elements from the or environment. In: The importance of chemical “speciation” in environmental processes, Bernhard M, Brinckman FE, Sadler PJ (eds) Dahlem Konferenzen 1986. Springer, Berlin Heidelberg New York, pp 71–83

    Google Scholar 

  • Milner NJ (1982) The accumulation of zine by Ø-group plaice, Pleuronectes platessa (L.), from high concentrations in sea water and food. J Fish Biol 21:325–336

    Google Scholar 

  • Möller W (1978) Untersuchungen zum Bleigehalt von Süßwasserschnecken im Oberrheingebiet (Mollusca: Gastropoda). Arch Hydrobiol 83 (3):405–418

    Google Scholar 

  • Moriarty F (1984) Persistent contaminants, compartmental models and concentration along food-chains. Ecological Bull 36:35–45

    Google Scholar 

  • Müller G (1983) Flüsse-vom Menschen vergiftet. Bild d Wissensch 5:95–100

    Google Scholar 

  • Müller G, Prosi F (1978) Verteilung von Zink, Kupfer und Cadmium in verschiedenen Organen von Plötzen (Rutilus rutilus L.) aus Neckar und Elsenz. Z Naturforsch 33c:7–14

    Google Scholar 

  • Murai T, Andrews JW, Smith RG Jr (1981) Effects of dietary copper on channel catfish. Aquaculture 22,353–357

    Google Scholar 

  • Murphy BR, Atchison GJ, McIntosh AW, Kolar DJ (1978) Cadmium and zinc content of fish from an industrially contaminated lake. J Fish Biol 13:327

    Google Scholar 

  • Nabrzyski M (1975) Mercury, copper, and zinc content in the meat tissue of some fresh-water fish. Bromat. Chem Toksykol 8 (3):313–319

    Google Scholar 

  • Ney JJ, Van Hassel JH (1983) Sources of variability in accumulation of heavy metals by fishes in a roadside stream. Arch Environ Contam Toxicol 12:701–706

    Google Scholar 

  • Norström RJ, McKinnon AE, deFreitas ASW (1976) A bioenergetic based model for pollutant accumulation by fish. Simulation of PCB and methylmercury residue levels in Ottawa River yellow perch (Perca flavescens). J Fish Res Bd Can 33:248–267

    Google Scholar 

  • Paasivirta J, Särkkä J, Surma-Aho K, Humppi T, Kuokkanen T, Martinen M (1983) Food chain enrichment of organochlorine compounds and mercury in clean and polluted lakes of Finland. Chemosphere 12 (2):239–252

    Google Scholar 

  • Paasivirta J, Heinola K, Humppi T, Karjalainen A, Knuutinen J, Mäntykoski K, Paukku R, Piilola T, Surma-Aho K, Tarhanen J, Welling L, Vihonen H (1985) Polychlorinated Phenols, Guaiacols and Catechols in environment. Chemosphere 14 (5):469–491

    Google Scholar 

  • Pärt P, Lock RAC (1983) Diffusion of calcium, cadmium and mercury in a mucous solution from rainbow trout. Comp Biochem Physiol 76C (2):259–263

    Google Scholar 

  • Pärt P, Svanberg O (1981) Uptake of cadmium in perfused rainbow trout (Salmo gairdneri) gills. Can J Fish Aquat Sci 38:917–923

    Google Scholar 

  • Patrick FM, Loutit M (1976) Passage of metals in effluents, through bacteria to higher organisms. Wat Res 10:333–335

    Google Scholar 

  • Patrick FM, Loutit MW (1978) Passage of metals to freshwater fish from their food. Wat Res 12:395–398

    Google Scholar 

  • Patrick WmH, Gambrell RP, Khalid RA (1977) Physicochemical factors regulating solubility and bioavailability of toxic heavy metals in contaminated dredged sediment. J Environ Sci Health A 12 (9):475–492

    Google Scholar 

  • Peakall DB, Lovett RJ (1972) Mercury: Its occurrence and effects in the ecosystem. Bio Sci 22 (1):20–25

    Google Scholar 

  • Pentreath RJ (1973) The accumulation and retention of 655-Zn and 54-Mn by the plaice, Pleuronectes platessa L. J. exp mar Biol Ecol 12:1–8

    Google Scholar 

  • Pentreath RJ (1977) The accumulation of cadmium by the plaice, Pleuronectes platessa L. and the thornback ray, Raja clavata L. J exp mar Biol Ecol 30:223–232

    Google Scholar 

  • Phillips GR, Buhler DR (1978) The relative contributions of methylmercury from food or water to rainbow trout (Salmo gairdneri) in a controlled laboratory environment. Trans Amer Fish Soc 107:853–861

    Google Scholar 

  • Phillips GR, Lenhart TE, Gregory RW (1980) Relation between trophic position and mercury accumulation among fishes from the Tongue River Reservoir, Montana. Environment Res 22:73–80

    Google Scholar 

  • Piscator M (1986) The dependence of toxic reactions on the chemical species of the elements. In: The importance of chemical “speciation” in environmental processes, Bernhard M, Brickman FE, Sadler PJ (eds) Dahlem Konferenzen 1986. Springer, Berlin Heidelberg New York, pp 59–70

    Google Scholar 

  • Prosi F (1977) Schwermetalle im Wasser, in Sedimenten und in limnischen Organismen der Elsenz. Thesis, Univ Heidelberg

  • Prosi F (1981) Heavy metals in aquatic organisms. In: Metal pollution in the aquatic environment, Förstner U, Wittmann GTW (eds) Springer, Berlin Heidelberg New York (2nd ed.), pp 271–323

    Google Scholar 

  • Prosi F (1983) Storage of heavy metals in organs of limnic and terrestric invertebrates and their effects on the cellular level. In: Heavy metals in the Environment, ed. by G. Müller, vol. I. CEP Consultants, Edinburgh, pp 459–462

    Google Scholar 

  • Prosi F, Back H (1985) Indicator cells for heavy metal uptake and distribution in organs from selected invertebrate animals. In: Heavy metals in the environment, ed. Lekkas TD, vol II, CEP Consultants, Edinburgh, pp 242–244

    Google Scholar 

  • Prosi F, Müller G (1987) Bedeutung der Sedimente als Schwermetallfalle: Bioverfügbarkeit und Mobilität von Metallen in Bezug auf den Biotransfer in limnische Organismen. In: Forschungsberichte der Deutschen Forschungsgemeinschaft (1987). Bioakkumulation in Nahrungsketten. Verlag Chemie, Weinheim (in press).

    Google Scholar 

  • Prosi F, Hoene-Schweikert H, Müller G (1979) Verteilungsmuster von Schwermetallen in einem ländlichen Raum. Naturwissenschaften 66:573

    Google Scholar 

  • Rainbow PS (1985) The biology of heavy metals in the sea. Intern. J. Environm. Studies 25:195–211

    Google Scholar 

  • Ramamoorthy S, Kushner DJ (1985) Heavy metal binding in river water. Nature 256:299–401

    Google Scholar 

  • Renfro WC, Fowler SW, Heyraud M, La Rosa J (1975) Relative importance of food and water in long-term zinc-65 accumulation by marine biota. J Fish Res Board Can 32:1339–1345

    Google Scholar 

  • Roch M, Nordin RN, Austin A, McKean CJP, Deniseger J, Kathman RD, McCarter JA, Clark MJR (1985) The effects of heavy metal contamination on the aquatic biota of Buttle Lake and the Campbell River drainage (Canada). Arch Environ Contam Toxicol 14:347–362

    Google Scholar 

  • Rygg B (1985) Effect of sediment copper on benthic fauna. Mar Ecol Prog Ser 25:83–89

    Google Scholar 

  • Särkkä J, Hattula M-L, Paasivirta J, Janatuinen J (1978) Mercury and chlorinated hydrocarbons in the food chain of Lake Päijänne, finland. Holarctic ecol 1:326–332

    Google Scholar 

  • Sakata M (1985) Diagenetic remobilization of manganese, iron, copper and lead in anoxic sediment of a freshwater pond. Wat Res 19 (8):1033–1038

    Google Scholar 

  • Saward D, Stirling A, Topping G (1975) Experimental studies on the effects of copper on a marine food chain. Mar Biol 29:351–361

    Google Scholar 

  • Segner H (1987) Response of fed and starved roach, Rutilus rutilus, to sublethal copper contamination. J Fish Biol (in press)

  • Segner H, Back H (1985) Importance of contaminated food for the uptake of heavy metals in the rainbow trout, Salmo gairdneri. Naturwissensch 72:379–380

    Google Scholar 

  • Simkiss K, Mason AZ (1983) Metal ions: Metabolic and toxic effects. In: The Mollusca, Hochachka PW (ed), vol. II. Academic press, New York, pp 102–164

    Google Scholar 

  • Skidmore JF (1970) Respiration and osmoregulation in rainbow trout with gills damaged by zine sulphate. J exp biol 52:484–494

    Google Scholar 

  • Somero GN, Chow TJ, Yencey PH, Snyder CB (1977) Lead accumulation rates in tissues of the estuarine teleost fish Gillichthys mirabilis: salinity and temperature effects. Arch Environm Contam Toxicol 6:337–348

    Google Scholar 

  • Spehar RL, Anderson RL, Fiandt JT (1978) Toxicity and bioaccumulation of cadmium and lead in aquatic invertebrates. Environ Pollut 15:195–208

    Google Scholar 

  • Stumm W, Keller L (1984) Chemische Prozesse in der Umwelt-Die Bedeutung der Speziierung für die chemische Dynamik der Metalle in Gewässern, Böden und Atmosphäre. In: Metalle in der Umwelt. Verteilung, Analytik und biologische Relevanz, Merian E (ed), Verlag Chemie, pp 21–33

  • Sunda W, Guillard RRL (1976) Relationship between cupric ion activity and the toxicity of copper to phytoplankton. J mar Res 34:511–529

    Google Scholar 

  • Sunda WG, Engel DW, Thuotte RW (1978) Effects of chemical speciation on toxicity of cadmium to grass shrimp Palaemonetes pugio: Importance of free cadmium ion. Envir Sci technol 12:409–413

    Google Scholar 

  • Tarifeno-Silva E, Kawasaki LY, Yut DP, Gordon MS, Chapman DJ (1982) Aquacultural approaches to recycling of dissolved nutrients in secondarily treated domestic wastewaters—III. Uptake of dissolved heavy metals by artificial food chains. Wat Res 16:59–65

    Google Scholar 

  • Tessier A, Campbell PGC, Auclair JC, Bisson M (1984) Relationships between the partitioning of trace metals in sediments and their accumulation in the tissues of the freshwater mollusc Elliptio complanata in a mining area. Can J Fish Aquat Sci 41 (10):1463–1472

    Google Scholar 

  • Van der Putte I, Brinkhurst MA, Koeman JH (1981) Effect of pH on the acute toxicity of hexavalent chromium to rainbow trout (Salmo gairdneri). Aquat Toxicol 1:129–142

    Google Scholar 

  • Van Hassel JH, Ney JJ, Garling DL (1980) Heavy metals in a stream ecosystem at sites near highways. Trans Am Fish Soc 109:636–643

    Google Scholar 

  • Varanasi U, Markey D (1978) Uptake and release of lead and cadmium in skin and mucus of coho salmon (Oncorhynchus kisutch). Comp Biochem Physiol 60C:187–191

    Google Scholar 

  • Vighi M (1981) Lead uptake and release in an experimental trophic chain. Ecotoxicol. Environment Saf 5:177–193

    Google Scholar 

  • Vinikour WS, Goldstein RM, Anderson RV (1980) Bioconcentration patterns of zinc, copper, cadmium and lead in selected fish specis from the Fox River, Illinois. Bull Environm Contam Toxicol 24:727–734

    Google Scholar 

  • Wachs B (1981) Schwermetalle in Wasser-Organismen-Bioakkumulation,-magnifikation und-retention. Sicherh Chem u Umw 1:113–115

    Google Scholar 

  • Wachs B (1982) Die Bioindikation von Schwermetallen in Fließgewässern. Münchner Beitr z Abwasser-, Fischerei- u Flußbiol 34:301–337

    Google Scholar 

  • Westernhagen Hv, Dethlefsen V, Rosenthal H, Fürstenberg G, Klinckmann J (1978) Fate and effects of cadmium in an experimental marine ecosystem. Helgol wiss Meeresunters 31:471–484

    Google Scholar 

  • Wiener JG, Giesy JP (1979) Concentrations of Cd, Cu, Mn, Pb, and Zn in fishes in a highly organic software pond. J Fish Res Bd Can 36:270

    Google Scholar 

  • Williams DR, Giesy JP Jr (1978) Relative importance of food and water sources to cadmium uptake by Gambusia affinis (Poeciliidae). Environm Res 16:326–332

    Google Scholar 

  • Willis JN, Sunda WG (1984) Relative contributions of food and water in the accumulation of zinc by two species of marine fish. Mar Biol 80:273–279

    Google Scholar 

  • Yediler A (1978) Anreicherungsverhalten von Zink in Binnengewässern. In: Schadstoffe im Oberflächenwasser und im Abwasser. Münch Beitr z Abwasser-, Fischerei- u. Flußbiologie 30:73–83

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dallinger, R., Prosi, F., Segner, H. et al. Contaminated food and uptake of heavy metals by fish: a review and a proposal for further research. Oecologia 73, 91–98 (1987). https://doi.org/10.1007/BF00376982

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00376982

Key words

Navigation