[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An inferential approach to Information Retrieval and its implementation using a manual thesaurus

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Most inferential approaches to Information Retrieval (IR) have been investigated within the probabilistic framework. Although these approaches allow one to cope with the underlying uncertainty of inference in IR, the strict formalism of probability theory often confines our use of knowledge to statistical knowledge alone (e.g. connections between terms based on their co-occurrences). Human-defined knowledge (e.g. manual thesauri) can only be incorporated with difficulty. In this paper, based on a general idea proposed by van Rijsbergen, we first develop an inferential approach within a fuzzy modal logic framework. Differing from previous approaches, the logical component is emphasized and considered as the pillar in our approach. In addition, the flexibility of a fuzzy modal logic framework offers the possibility of incorporating human-defined knowledge in the inference process. After defining the model, we describe a method to incorporate a human-defined thesaurus into inference by taking user relevance feedback into consideration. Experiments on the CACM corpus using a general thesaurus of English, Wordnet, indicate a significant improvement in the system's performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Bookstein, A. (1983). Outline of a General Probabilistic Retrieval Model. Journal of Documentation 39(2): 63–72.

    Google Scholar 

  • Buell, D. A. (1982) An Analysis of Some Fuzzy Subset: Applications to Information Retrieval Systems. Fuzzy Sets and Systems 7: 35–42.

    Google Scholar 

  • Buell, D. A. & Kraft, D. H. (1981) A Model for a Weighted Retrieval System. Journal of the American Society for Information Science 32: 211–216.

    Google Scholar 

  • Chellas, B. F. (1980). Modal logic—An Introduction. Cambridge University Press: Cambridge.

    Google Scholar 

  • Chen, H. & Dhar, V. (1991). Cognitive Process As a Basis for Intelligent Retrieval System Design. Information Processing & Management 27(5): 405–432.

    Google Scholar 

  • Chen, H., Lynch, K. J., Basu, K. & Ng, D. (1993). Generating, Integrating and Activating Thesauri for Concept-Based Document Retrieval. IEEE Expert Intelligent Systems & their Applications 8(2): 25–34.

    Google Scholar 

  • Chiaramella, Y. & Nie, J.-Y. (1989). A Retrieval Model Based on an Extended Modal Logic and Its Application to the RIME Experimental Approach. Research and Development on Information Retrieval-ACM-SIGIR Conference, 25–43, Brussels.

  • Cooper, W. S. (1995). Some Inconsistencies and Misidentified Modeling Assumptions in Probabilistic Information Retrieval. ACM Transactions on Information Systems 13(1): 100–111.

    Google Scholar 

  • Croft, W. B. (1987). Approaches to Intelligent Information Retrieval. Information Processing & Management 23(4): 249–254.

    Google Scholar 

  • Dubois, D. & Prade, H. (1984). Fuzzy Logics and the Generalized Modus Ponens Revisited. Cybernetics and Systems: An International Journal 15: 293–331.

    Google Scholar 

  • Fox, E. A. (1983). Characterization of Two Experimental Collections in Computer and Information Science. Cornell University, Department of Computer Science, Technical Report TR 83–561, September.

  • Fox, E. E. (1980). Lexical Relations: Enhancing Effectiveness of Information Retrieval Systems. Sigir Forum 15(3): 6–35.

    Google Scholar 

  • Frikes, W. B. & Baeza-Yates, R. (ed.) (1992). Information Retrieval: Data Structures & Algorithms. Prentice-Hall: Englewood Cliffs, N.J.

    Google Scholar 

  • Fuhr, N. (1992). Probabilistic Models in Information Retrieval. The Computer Journal 35(3): 243–255.

    Google Scholar 

  • Grefenstette, G. (1992). Use of Syntactic Context to Produce Term Association Lists. 15th ACM-SIGIR Conference, 89–97.

  • Güntzer, V., Jüttner, S. G. & Sarre, F. (1989). Automatic Thesaurus Construction by Machine Learning from Retrieval Sessions. Information Processing & Management 25(3): 265–273.

    Google Scholar 

  • Hancock-Beaulieu, M. & Walker, S. (1992). An Evaluation of Automatic Query Expansion in an Online Library Catalogue. Journal of Documentation 48(4): 406–421.

    Google Scholar 

  • Hearst, M. A. (1992). Automatic Acquisition of Hyponyms from Large Text Corpora. Fourteenth International Conference on Computational Linguistics COLING'92.

  • Hindle, D. (1989). Acquiring Disambiguation Rules from Text. 27th Annual Meeting of the Association for Computational Linguistics, 118–125, Pittsburgh.

  • Kim, Y. W. & Kim, J. H. (1990). A Model of Knowledge Based Information Retrieval with Hierarchical Concept Graph. Journal of Documentation 46(2): 113–136.

    Google Scholar 

  • Kimoto, H. & Iwaderie, T. (1990). Construction of a Dynamic Thesaurus and Its Use for Associated Information Retrieval. 13th ACM-SIGIR Conference, 227–240.

  • Kraft, D. H. & Buell, D. A. (1983). Fuzzy Sets and Generalized Boolean Retrieval Systems. International Journal on Man-Machine Studies 19: 49–56.

    Google Scholar 

  • Lee, J. H., Kim, M. H. & Lee, Y. J. (1993). Information Retrieval Based on Conceptual Distance in IS-A Hierarchies. Journal of Documentation 49: 188–207.

    Google Scholar 

  • Lee, J. H., Kim, M. H. & Lee, Y. J. (1994). Ranking Documents in Thesaurus-Based Boolean Retrieval Systems. Information Processing & Management 30(1): 79–91.

    Google Scholar 

  • Lu, X. (1990). Document Retrieval: A Structure Approach. Information Processing & Management 26(2): 209–218.

    Google Scholar 

  • Maron, M. & Kuhns, J. (1960). On Relevance, Probabilistic Indexing and Information Retrieval. Journal of the ACM 7: 216–244.

    Google Scholar 

  • Miller, G. (ed.) (1990). Wordnet: An On-Line Lexical Database.

  • Miyamoto, S. (1990). Information Retrieval Based on Fuzzy Associations. Fuzzy Sets and Systems 38: 191–205.

    Google Scholar 

  • Nie, J.-Y. (1989). An Information Retrieval Model Based on Modal Logic. Information Processing & Management 25(5): 477–491.

    Google Scholar 

  • Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann: San Mateo CA.

    Google Scholar 

  • Peat, H. J. & Willett, P. (1991). The Limitation of Term Co-Occurence Data for Query Expansion in Document Retrieval Systems. Journal of the American Society for Information Science 42(5): 378–383.

    Google Scholar 

  • Qiu, Y. & Frei, H. P. (1993). Concept Based Query Expansion. Research and Development in Information Retrieval, ACM-SIGIR, 160–169.

  • Rada, R., Barlow, J., Potharst, J., Zanstra, P. & Bijstra, D. (1991). Document Ranking Using an Enriched Thesaurus. Journal of Documentation 47: 240–253.

    Google Scholar 

  • Rada, R., Mili, H., Bicknell, E. & Blettner, M. (1989). Development and Application of a Metric on Semantic Nets. IEEE Transaction on Systems, Man, and Cybernetics 19(1): 17–30.

    Google Scholar 

  • Radecki, T. (1979). Fuzzy Set Theoretical Appraoch to Document Retrieval. Information Processing & Management 15: 247–259.

    Google Scholar 

  • Rijsbergen, C.J.v. (1977). A Theoretical Basis for the Use of Co-Ocurrence Data in Information Retrieval. Journal of Documentation 33: 106–119.

    Google Scholar 

  • Rijsbergen, C.J.v. (1979). Information Retrieval, 2nd ed. Butterworths: London.

    Google Scholar 

  • Rijsbergen, C. J. v. (1986). A Non-Classical Logic for Information Retrieval. The Computer Journal 29(6): 481–485.

    Google Scholar 

  • Rijsbergen, C. J. v. (1989). Towards an Information Logic. Research and Development on Information Retrieval-ACM-SIGIR, 77–86.

  • Robertson, S., Maron, M. & Cooper, W. (1982). Probability of Relevance: a Unification of Two Competing Models for Document Retrieval. Information Technology: Research and Development 1: 1–21.

    Google Scholar 

  • Salton, G. & Buckley, C. (1988). On the Use of Spreading Activation Methods in Automatic Information Retrieval. 11th ACM-SIGIR Conference.

  • Salton, G. & McGill, M. J. (1983). Introduction to Modern Information Retrieval. McGraw-Hill.

  • Schotch, P.K. (1975). Fuzzy Modal Logic. International Symposium on Multiple-Valued Logic, 176–182. Indiana University, Bloomington.

    Google Scholar 

  • Sinclair, J. (1991). Corpus, Concordance, Collocation. Oxford University Press: Oxford.

    Google Scholar 

  • Sparck-Jones, K. (1991). Notes and References on Early Automatic Classification Work. SIGIR Forum 25(1): 10–17.

    Google Scholar 

  • Thompson, P. (1988). Subjective Probability and Information Retrieval: A Review of the Psychological Literature. Journal of Documentation 44(2): 119–143.

    Google Scholar 

  • Turtle, H. & Croft, W. B. (1990). Inference Network for Document Retrieval. Research and Development on Information Retrieval-ACM-SIGIR, Brussels.

  • Voorhees, E. M. (1993). Using Wordnet to Disambiguate Word Senses for Text Retrieval. Research and Development on Information Retrieval-ACM-SIGIR, Pittsburgh.

  • Voorhees, E. M. (1994). Query Expansion Using Lexical-Semantic Relations. Research and Development on Information Retrieval-ACM-SIGIR, 61–70, Dublin.

  • Waller, W. G. & Kraft, D. H. (1979). A Mathematical Model for a Weighted Boolean Retrieval System. Information Processing & Management 15: 235–245.

    Google Scholar 

  • Wong, S. K. M. & Yao, Y. Y. (1991). A Probabilistic Inference Model for Information Retrieval. Information Systems 16(3): 301–321.

    Google Scholar 

  • Ying, M. S. (1988). On Standard Models of Fuzzy Modal Logics. Fuzzy Sets and Systems 26: 357–363.

    Google Scholar 

  • Zadeh, L. A. (1983). The Role of Fuzzy Logic in the Management of Uncertainty in Expert Systems. Fuzzy Sets and Systems 11: 199–227.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, JY., Brisebois, M. An inferential approach to Information Retrieval and its implementation using a manual thesaurus. Artif Intell Rev 10, 409–439 (1996). https://doi.org/10.1007/BF00130693

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00130693

Key words

Navigation