[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

User modelling and user adapted interaction in an intelligent tutoring system

  • Published:
User Modeling and User-Adapted Interaction Aims and scope Submit manuscript

Abstract

User modelling and user-adapted interaction are crucial to the provision of true individualised instruction, which intelligent tutoring systems strive to achieve. This paper presents how user (student) modelling and student adapted instruction is achieved in FITS, an intelligent tutoring system for the fractions domain. Some researchers have begun questioning both the need for detailed student models as well as the pragmatic possibility of building them. The key contributions of this paper are in its attempt to rehabilitate student modelling/adaptive tutoring within ITSs and in FITS's practical use of simple techniques to realise them with seemingly encouraging results; some illustrations are given to demonstrate the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J. R. D. F. Boyle, and B. J. Reiser: 1985a, ‘Intelligent Tutoring Systems’. Science 228, 456–462.

    Google Scholar 

  • Barr, A. and E. A. Feigenbaum: 1982, The Handbook of Artificial Intelligence 2. Los Altos: Kaufmann.

    Google Scholar 

  • Brown, J. S. and R. R. Burton: 1978, ‘Diagnostic Models for Procedural Bugs in Basic Mathematical Skills’. Cognitive Science 2, 155–192.

    Google Scholar 

  • Burns, H. L. and C. G. Capps: 1988, ‘Foundations of Intelligent Tutoring Systems: An Introduction’. In: M. C. Polson and J. J. Richardson (eds.), Foundations of Intelligent Tutoring Systems. London: Lawrence Erlbaum, pp. 1–19.

    Google Scholar 

  • Burton, R.: 1982, ‘Diagnosing Bugs in a Simple Procedural Skill’. In: D. H. Sleeman and J. S. Brown (eds.), Intelligent Tutoring Systems. London: Academic Press, pp. 157–183.

    Google Scholar 

  • Carbonell, J. R. Michalski, and T. Mitchell: 1983, ‘An Overview of Machine Learning’. In: R. S. Michalski J. G. Carbonell, and T. M. Mitchell (eds.), Machine Learning. Palo Alto: Tioga, pp. 3–23.

    Google Scholar 

  • Ford, L.: 1987a, ‘Teaching Strategies and Tactics in Intelligent Computer Aided Instruction’. Artificial Intelligence Review 1, 201–215.

    Google Scholar 

  • Ford, L.: 1987b, ‘Anatomy of an ICAI System’. In: R. Lewis and E. D. Tagg (eds.), Trends in Computer Assisted Instruction. London: Blackwell Scientific, pp. 22–31.

    Google Scholar 

  • Ford, L.: 1988, ‘The Appraisal of an ICAI System’. In: J. A. Self (ed.), Artificial Intelligence and Human Learning: Intelligent Computer-Aided Instruction. London: Chapman and Hall, pp. 109–123.

    Google Scholar 

  • Gilmore, D. and J. A. Self: 1988, ‘The Application of Machine Learning to Intelligent Tutoring Systems’. In: J. A. Self (ed.), Artificial Intelligence and Human Learning: Intelligent Computer-Aided Instruction. London: Chapman and Hall, pp. 179–196.

    Google Scholar 

  • Goldstein, I. P.: 1982, ‘The Genetic Graph: A Representation for the Evolution of Procedural Knowledge’. In: D. H. Sleeman and J. S. Brown (eds.), Intelligent Tutoring Systems. London: Academic Press, pp. 51–77.

    Google Scholar 

  • Hartley, J. R. and D. H. Sleeman: 1973, ‘Towards More Intelligent Teaching Systems’. International Journal of Man-Machine Studies 5, 215–236.

    Google Scholar 

  • Mandl, H. and A. Lesgold (eds.): 1988, Learning Issues for Intelligent Tutoring Systems. London: Springer-Verlag.

    Google Scholar 

  • Nwana, H. S.: 1989, ‘An Iterative-Style Approach to Constructing Intelligent Tutoring Systems in Mathematics’. Ph.D. Thesis, Aston University, Birmingham, England.

    Google Scholar 

  • Nwana, H. S. and P. Coxhead: 1988, ‘Towards an Intelligent Tutoring System for a “Complex” Mathematical Domain’. Expert Systems 5(4), 290–299.

    Google Scholar 

  • Nwana, H. S. and P. Coxhead: 1989, ‘Fraction Bugs: Explanations, Bug Theories and Implications on Intelligent Tutoring Systems’. Cognitive Systems 2(3), 275–289.

    Google Scholar 

  • Nwana H. S.: 1990a, ‘A Brief Overview of FITS: A Fraction Intelligent Tutoring System’. In: Proceedings of the IEE Colloquium on Intelligent Tutoring Systems. Savoy Place, London, 20 November.

  • Nwana, H. S.: 1990b, ‘The Anatomy of FITS: A Mathematic Tutor’. Intelligent Tutoring Media 1(2), 83–95.

    Google Scholar 

  • Nwana, H. S.: 1990c, ‘Intelligent Tutoring Systems: An Overview’. Artificial Intelligence Review 4(4), 251–277.

    Google Scholar 

  • Oliver, W. P.: 1973, ‘Computer-assisted mathematics instruction for community college students’. International Journal of Man-Machine Studies 5, 385–395.

    Google Scholar 

  • O'Shea, T.: 1982a, ‘A Self-Improving Quadratic Tutor’. In: D. H. Sleeman and J. S. Brown (eds.), Intelligent Tutoring Systems. London: Academic Press, pp. 283–307.

    Google Scholar 

  • O'Shea, T.: 1982b, ‘Intelligent Systems in Education’. In: D. Michie (ed.), Introductory Readings in Expert Systems. London: Gordon and Breach, pp. 141–176.

    Google Scholar 

  • O'Shea, T. and J. Self: 1983, Learning and Teaching with Computers. Sussex: Harvester Press.

    Google Scholar 

  • O'Shea, T., R. Bornat, and B. Du Boulay et al.: 1984, ‘Tools for creating intelligent computer tutors’. In: Elithorn and R. Beneiji (eds.), Artificial and Human Intelligence. North-Holland: Elsevier, pp. 181–199.

    Google Scholar 

  • Rich, E.: 1979, ‘User Modelling Via Stereotypes’. Cognitive Science 3, 329–354.

    Google Scholar 

  • Ross, P. J. Jones, and P. Millington: 1987, ‘User Modelling in Intelligent Teaching and Tutoring’. In: R. Lewis and E. D. Tagg (eds.), Trends in Computer Assisted Instruction. London: Blackwell, pp. 32–44.

    Google Scholar 

  • Self, J. A.: 1974, ‘Student Models in Computer-Aided Instruction’. International Journal of Man-Machine Studies 6, 261–276.

    Google Scholar 

  • Self, J. A.: 1985, ‘Intelligent Computer Assisted Instruction’. Paper presented at the ICAI Spring Seminar, Logica Cambridge Ltd, Cambridge.

    Google Scholar 

  • Self, J. A.: 1987a, ‘The Application of Machine Learning to Student Modelling’. In: R. W. Lawler and M. Yazdani (eds.), Artificial Intelligence and Education 1: Learning Environments and Tutoring Systems. Norwood: Ablex, pp. 267–280.

    Google Scholar 

  • Self J. A.: 1987b, ‘Realism in Student Modelling’. Alvey-IKBS Research Workshop Tutoring Systems. University of Exeter.

  • Self, J. A. (ed.): 1988a, Artificial Intelligence and Human Learning: Intelligent Computer-Aided Instruction. London, Chapman and Hall.

    Google Scholar 

  • Self J. A.: 1988b, ‘Bypassing the Intractable Problem of Student Modelling’. Proceedings of the 1st International Conference on Intelligent Tutoring Systems. Montreal, Canada, pp. 18–24.

  • Self, J. A.: 1988c, ‘Student Models: What Use Are They?’. In: P. Ercoli and R. Lewis (eds.), Artificial Intelligence Tools in Education. Amsterdam: North-Holland, pp. 73–86.

    Google Scholar 

  • Sleeman D.: 1982, ‘Inferring (Mal) Rules from Pupils' Protocols’. Proceedings of the European Conference on Artificial Intelligence. pp. 160–164.

  • Sleeman, D. H.: 1985, ‘UMFE: A User Modelling Front-End Subsystem’. International Journal of Man-Machine Sudies 23, 71–88.

    Google Scholar 

  • Tennyson, R. D. and Park, O-C.: 1980, ‘The Teaching of Concepts: A Review of Instructional Design Research Literature’. Review of Educational Research 50(1), 55–70.

    Google Scholar 

  • Tobias, S.: 1985, ‘Computer Assisted Instruction’. In: M. C. Wang and H. J. Waldberg (eds.), Adapting Instruction to Individual Differences. Berkeley, CA: McCutchan, pp. 135–159.

    Google Scholar 

  • Vanlehn, K.: 1987, ‘Learning One Subprocedure Per Lesson’. Artificial Intelligence 31(1), 1–40.

    Google Scholar 

  • Vanlehn, K.: 1988b, ‘Student Modelling’. In: M. C. Polson and J. J. Richardson (eds.), Foundations of Intelligent Tutoring Systems. London: Lawrence Erlbaum, pp. 55–78.

    Google Scholar 

  • Wachsmuth, I.: 1988, ‘Modelling the Knowledge Base of Mathematical Learners: Situation - Specific and Situation-Nonspecific Knowledge’. In: H. Mandl and A. Lesgold (eds.), Learning Issues for Intelligent Tutoring Systems. London: Springer-Verlag, pp. 63–79.

    Google Scholar 

  • Wenger, E.: 1987, Artificial Intelligence and Tutoring Systems. Los Altos, CA: Morgan Kaufmann.

    Google Scholar 

  • Yazdani, M.: 1986a, ‘Intelligent Tutoring Systems Survey’. Artificial Intelligence Review 1, 43–52.

    Google Scholar 

  • Yazdani, M.: 1987, ‘Intelligent Tutoring Systems: An Overview’. In: R. Lawler and M. Yazdani (eds.), Artificial Intelligence and Education 1. NJ: Ablex, pp. 182–201.

    Google Scholar 

  • Zissos, A. Y. and, Witten, I. H.: 1985, ‘User Modelling for a Computer Coach: A Case Study’. International Journal of Man-Machine Sudies 23, 729–750.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nwana, H.S. User modelling and user adapted interaction in an intelligent tutoring system. User Model User-Adap Inter 1, 1–32 (1991). https://doi.org/10.1007/BF00158950

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00158950

Key words

Navigation