[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Fourier transform measurement of NO2 absorption cross-section in the visible range at room temperature

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

New laboratory measurements of NO2 absorption cross-section were performed using a Fourier transform spectrometer at 2 and 16 cm-1 (0.03 and 0.26 nm at 400 nm) in the visible range (380–830 nm) and at room temperature. The use of a Fourier transform spectrometer leads to a very accurate wavenumber scale (0.005 cm-1, 8×10-5 nm at 400 nm). The uncertainty on the new measurements is better than 4%. Absolute and differential cross-sections are compared with published data, giving an agreement ranging from 2 to 5% for the absolute values. The discrepancies in the differential cross-sections can however reach 18%. The influence of the cross-sections on the ground-based measurement of the stratospheric NO2 total amount is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AmorusoA., CrescentiniL., FioccoG., and VolpeM., 1993: New measurements of the NO2 absorption cross-section in the 440- to 460-nm region and estimates of the NO2-N2O4 equilibrium constant, J. Geophys. Res. 98, 16857–16863.

    Google Scholar 

  • BassA. M., LedfordA. E., and LauferA. H., 1976: Extinction coefficients of NO2 and N2O4, J. Res. Nat. Bur. Stand. A 80, 143–166.

    Google Scholar 

  • Camy-PeyretC., BergquistB., GalleB., CarleerM., ClerbauxC., ColinR., FaytC., GoutailF., Nunes-PinharandaM., PommereauJ. P., HausmannM., PlattU., PundtI., RudolphT., HermansC., SimonP. C., VandaeleA. C., PlaneJ., and SmithN., 1996: Intercomparison of instruments for tropospheric measurements using differential optical absorption spectroscopy, J. Atm. Chem. 23, 51–80.

    Google Scholar 

  • Chance, K. V., Burrows, J. P., Meller, R., Moortgat, G. K., Perner, D., and Schneider, W., 1990: Database needs for UV/Visible atmospheric spectroscopy, in: A. Barbe, A. Ponomarev, N. Yu, and R. Zander (eds), Atmospheric Spectroscopy Applications Workshop, Moscow, pp. 186–194.

  • CoquartB., JenouvrierA., and MérienneM. F., 1995: The NO2 absorption spectrum. II Absorption cross-sections at low temperatures in the 400–500 nm region, J. Atmos. Chem. 21, 251–261.

    Google Scholar 

  • CrutzenP., 1970: The influence of nitrogen oxide on the atmospheric ozone content, Q. J. R. Meteorol. Soc. 96, 320.

    Google Scholar 

  • DavidsonJ. A., CantrellC. A., McDanielA. H., ShifterR. E., MadronichS., and CalvertJ. G., 1988: Visible-ultraviolet absorption cross-sections for NO2 as a function of temperature, J. Geophys. Res. 93, 7105–7112.

    Google Scholar 

  • EdnerH., RagnarsonP., SpännareS., and SvanbergS., 1993: Differential optical absorption spectroscopy (DOAS) system for urban atmospheric pollution monitoring, Appl. Optics 32, 327–332.

    Google Scholar 

  • EvangelistiF., BaroncelliA., BonasoniP., GiovanelliG., and RavegnaniF., 1995: Differential optical absorption spectrometer for measurement of tropospheric pollutants, Appl. Optics 34, 2737–274.

    Google Scholar 

  • HallJr.T. C. and BlacetF. E., 1952: Separation of the absorption spectra of NO2 and N2O4 in the range of 2400–5000A, J. Chem. Phys. 20, 1745–1749.

    Google Scholar 

  • HarwoodM. H. and JonesR. L., 1994: Temperature dependent ultraviolet-visible absorption cross-sections of NO2 and N2O4: low-temperature measurements of the equilibrium constant for 2NO2 ↔ N2O4, J. Geophys. Res. 99, 22955–22964.

    Google Scholar 

  • HofmannD. J., BonasoniP., DeMazièreM., EvangelistF., FrancoisP., GiovanelliG., GoldmanA., GoutailF., HarderJ., JakoubekR., JohnstonP., KerrJ., McElroyT., McKenzieR., MountG., PommereauJ.-P., SimonP., SolomonS., StutzJ., ThomasA., VanRoozendaelM., and WuE., 1995: Intercomparison of UV/Visible spectrometers for measurements of stratospheric NO2 for the network for the detection of stratospheric change, J. Geophys. Res. 100, 16765–16791.

    Google Scholar 

  • HurtmansD., HermanM., and Vander AuweraJ., 1993: Integrated band intensities in N2O4 in the infrared range, J. Quant. Spectrosc. Transfer 50, 595–602.

    Google Scholar 

  • JohnstonH. S. and GrahamR., 1974: Photochemistry of NO x and HNO x compounds, Can. J. Chem. 52, 1415–1423.

    Google Scholar 

  • KoffendJ. B., HollowayJ. S., KwokM. A., and HeiderR. F., 1987: High resolution absorption spectroscopy of NO2, J. Quant. Spectrosc. Transfer 37, 449–453.

    Google Scholar 

  • LeroyB., RigaudP., and HicksE., 1987: Visible absorption cross-sections of NO2 at 298 K and 235 K, Annales Geoph. 5A, 247–250.

    Google Scholar 

  • MérienneM. F., JenouvrierA., and CoquartB., 1995: The NO2 absorption spectrum. I: Absorption cross-sections at ambient temperature in the 300–500 nm region, J. Atmos. Chem. 20, 281–297.

    Google Scholar 

  • PlattU. and PernerD., 1980: Direct measurements of atmospheric CH2O, HNO2, O3, NO2, and SO2 by differential optical absorption in the near UV, J. Geophys. Res. 85, 7453–7458.

    Google Scholar 

  • RoscoeH. K. and HindA. K., 1993: The equilibrium constant of NO2 with N2O4 and the temperature dependence of the visible spectrum of NO2: A critical review and the implications for measurements of NO2 in the polar stratosphere, J. Atmos. Chem. 16, 257–276.

    Google Scholar 

  • SchneiderW., MoortgatG. K., TyndallG. S., and BurrowsJ. P., 1987: Absorption cross-sections of NO2 in the UV and Visible region (200–700 nm) at 298 K, J. Photochem. and Photobiol., A: Chem. 40, 195–217.

    Google Scholar 

  • SolomonS., SchmeltekoffA. L., and SandersR. W., 1987: On the implementation of zenith sky absorption measurements, J. Geophys. Res. 92, 8311.

    Google Scholar 

  • VandaeleA. C., CarleerM., ColinR., and SimonP. C., 1992: Detection of urban O3, NO2, H2CO and SO2 using Fourier Transform Spectroscopy, in: H.Schiff and U.Platt (eds), Optical Methods in Atmospheric Chemistry, SPIE Proc. vol 1715, The International Society or Optical Engineering, Bellingham, Washington, pp. 288–292.

    Google Scholar 

  • VandaeleA. C., SimonP. C., GuilmotJ. M., CarleerM., and ColinR., 1994: SO2 absorption cross-section measurement in the UV using a Fourier Transform Spectrometer, J. Geophys. Res. 99, 25599–25605.

    Google Scholar 

  • VanRoozendaelM., FaytC., BolséeD., SimonP. C., GilM., YelaM., and CachoJ., 1984: Ground-based stratospheric NO2 monitoring at Keflavik (Iceland) during EASOE, Geophys. Res. Lett. 21, 1379–1382.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandaele, A.C., Hermans, C., Simon, P.C. et al. Fourier transform measurement of NO2 absorption cross-section in the visible range at room temperature. J Atmos Chem 25, 289–305 (1996). https://doi.org/10.1007/BF00053797

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00053797

Key words

Navigation