[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Introduction to Agent-Based Modelling

  • Chapter
  • First Online:
Agent-Based Models of Geographical Systems

Abstract

The application of agent-based modelling (ABM) to simulating dynamics within geographical systems has seen a considerable increase over the last decade. ABM allows the disaggregation of systems into individual components that can potentially have their own characteristics and rule sets. This is a powerful paradigm that can be exploited through simulation to further our knowledge of the workings of geographical systems. We present in this chapter an overview of ABM; the main features of an agent-based model are given, along with a discussion of what constitutes an agent-based model. The distinction between cellular automata (CA), microsimulation (MSM) and agent-based models are discussed along with the advantages and limitations of ABM for modelling geographical systems. We conclude with a brief discussion of important areas for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 223.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 279.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 279.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    While ABM deals with individual and not aggregate behaviour, often it is neither feasible nor desirable to model complete agent heterogeneity. Instead agents are often given a representative behaviour; thus we move from average aggregate behaviour to average individual behaviour. However, greater heterogeneity can be introduced by adding ‘noise’ to such agents.

References

  • Abdou, M., Hamill, L., & Gilbert, N. (2012). Designing and building an agent-based model. In A. J. Heppenstall, A.T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 141–166). Dordrecht: Springer.

    Google Scholar 

  • Alam, S. J., Geller, A., & Tsvetovat, M. (2012). Networks in agent-based social simulation. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 199–216). Dordrecht: Springer.

    Google Scholar 

  • Athale, C. A., & Deisboeck, T.S. (2006). The effects of EGF-receptor density on multi-scale tumour growth patterns. Journal of Theoretical Biology, 238(4), 771–779.

    Article  Google Scholar 

  • Axelrod, R. (1997). The complexity of cooperation: Agent-based models of competition and collaboration. Princeton: Princeton University Press.

    Google Scholar 

  • Axelrod, R. (2006). Agent-based modelling as a bridge between disciplines. In L. Tesfatsion & K. L. Judd (Eds.), Handbook of computational economics: Agent-based computational economics (Vol. 2, pp. 1598–1583). Amsterdam: North-Holland.

    Google Scholar 

  • Axelrod, R. (2007). Simulation in the social sciences. In J. P. Rennard (Ed.), Handbook of research on nature inspired computing for economy and management (pp. 90–100). Hershey: Idea Group.

    Google Scholar 

  • Axelrod, R., & Bennett, S. D. (1993). A landscape theory of aggregation. British Journal of Political Science, 23(2), 211–233.

    Article  Google Scholar 

  • Axtell, R. (1999). The emergence of firms in a population of agents: Local increasing returns, unstable nash equilibria, and power law size distributions, Working paper no. 3. Washington DC: Center on Social and Economic Dynamics (The Brookings Institute).

    Google Scholar 

  • Axtell, R. (2000). Why agents? On the varied motivations for agent computing in the social sciences, Working paper 17. Washington DC: Center on Social and Economic Dynamics (The Brookings Institute).

    Google Scholar 

  • Axtell, R., & Epstein, J. M. (1994), Agent-based modelling: Understanding our creations (pp. 28–32). The Bulletin of the Santa Fe Institute, Winter.

    Google Scholar 

  • Axtell, R., Epstein, J. M., Dean, J. S., Gumerman, G. J., Swedlund, A. C., Harburger, J., et al. (2002). Population growth and collapse in a multiagent model of the Kayenta Anasazi in long house valley. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 99(3), 7275–7279.

    Article  Google Scholar 

  • Bak, P., Paczuski, M., & Shubik, M. (1999). Price variations in a stock market with many agents, Discussion paper 1132. New Haven: Cowles Foundation, (Yale University). Available at http://cowles.econ.yale.edu/P/cd/d11a/d1132.pdf

  • Balan, G. C., Cioffi-Revella, C., Luke, S., Pamait, L., & Paus, S. (2003). MASON: A Java multi agent simulation library. In C. M. Macal,, M. J. North & D. Sallach (Eds.) Proceedings of Agent 2003 Conference on Challenges in Social Simulation (pp. 49–64). Chicago: University of Chicago.

    Google Scholar 

  • Ballas, D., Clarke, G., & Wiemers, E. (2005). Building a dynamic spatial microsimulation model for Ireland. Population, Space and Place, 11(3), 157–172.

    Article  Google Scholar 

  • Barros, J. (2012). Exploring urban dynamics in Latin American cities using an agent-based modelling approach. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 571–589). Dordrecht: Springer.

    Google Scholar 

  • Batty, M. (1976). Urban modelling: Algorithms, Calibrations, Predictions. Cambridge: Cambridge University Press.

    Google Scholar 

  • Batty, M. (2007). Model cities. Town Planning Review, 78(2), 125–178.

    Article  Google Scholar 

  • Batty, M. (2012). A generic framework for computational spatial modelling. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.) Agent-based models of geographical systems (pp. 19–50). Dordrecht: Springer.

    Google Scholar 

  • Batty, M., & Torrens, P. M. (2005). Modelling and prediction in a complex world. Futures, 37(7), 745–766.

    Article  Google Scholar 

  • Batty, M., Desyllas, J., & Duxbury, E. (2003). Safety in numbers? Modelling crowds and designing control for the Notting Hill Carnival. Urban Studies, 40(8), 1573–1590.

    Article  Google Scholar 

  • Benenson, I., & Torrens, P. M. (2004). Geosimulation: Automata-based modelling of urban phenomena. London: Wiley.

    Book  Google Scholar 

  • Benenson, I., Omer, I., & Hatna, E. (2002). Entity-based modelling of urban residential dynamics: The case of Yaffo, Tel Aviv. Environment and Planning B, 29(4), 491–512.

    Article  Google Scholar 

  • Bernard, R. N. (1999). Using adaptive agent-based simulation models to assist planners in policy development: The case of rent control, Working paper 99-07-052. Santa Fe, NM: Santa Fe Institute.

    Google Scholar 

  • Beuck, U., Rieser, M., Strippgen, D., Balmer, M., & Nagel, K. (2008). Preliminary results of a multi-agent traffic simulation for Berlin. In S. Albeverio, D. Andrey, P. Giordano, & A. Vancheri (Eds.), The dynamics of complex urban systems: An interdisciplinary approach (pp. 75–94). New York: Springer Physica.

    Chapter  Google Scholar 

  • Birkin, M., & Wu, B. (2012). A review of microsimulation and hybrid agent-based approaches. In A. J. Heppenstall, A.T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 51–68). Dordrecht: Springer.

    Google Scholar 

  • Boman, M., & Holm, E. (2004). Multi-agent systems, time geography, and microsimulations. In M.-O. Olsson & G. Sjöstedt (Eds.), Systems approaches and their application (pp. 95–118). Norwell: Kluwer.

    Google Scholar 

  • Bonabeau, E. (2002). Agent-based modelling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 99(3), 7280–7287.

    Article  Google Scholar 

  • Brown, D. G. (2006). Agent-Based Models. In H. Geist (Ed.), The earth’s changing land: An encyclopaedia of land-use and land-cover change (pp. 7–13). Westport: Greenwood Publishing Group.

    Google Scholar 

  • Brown, D. G., Page, S. E., Riolo, R., Zellner, M., & Rand, W. (2005). Path dependence and the validation of agent-based spatial models of land use. International Journal of Geographical Information Science, 19(2), 153–174.

    Article  Google Scholar 

  • Casti, J. L. (1997). Would-be-worlds: How simulation is changing the frontiers of science. New York: Wiley.

    Google Scholar 

  • Cederman, L. E. (2001). Agent-based modelling in political science. The Political Methodologist, 10(1), 16–22.

    Google Scholar 

  • Cederman, L. E. (2004). Computational models of social systems. Available at http://www.cederman.ethz.ch/teaching/archive/compmodels/ss2004/slides/compmodels-20040330.pdf

  • Couclelis, H. (2002). Modelling frameworks, paradigms, and approaches. In K. C. Clarke, B. E. Parks, & M. P. Crane (Eds.), Geographic information systems and environmental modelling (pp. 36–50). London: Prentice Hall.

    Google Scholar 

  • Crooks, A. T., & Castle, C. (2012). The integration of agent-based modelling and geographical information for geospatial simulation. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 219–252). Dordrecht: Springer.

    Google Scholar 

  • Crooks, A. T., Castle, C. J. E., & Batty, M. (2008). Key challenges in agent-based modelling for geo-spatial simulation. Computers, Environment and Urban Systems, 32(6), 417–430.

    Article  Google Scholar 

  • Crooks, A. T., Hudson-Smith, A., & Dearden, J. (2009). Agent street: An environment for exploring agent-based models in second life. Journal of Artificial Societies and Social Simulation, 12(4). Available at http://jasss.soc.surrey.ac.uk/12/4/10.html

  • Emonet, T., Macal, C. M., North, M. J., Wickersham, C. E., & Cluzel, P. (2005). AgentCell: A digital single-cell assay for bacterial chemotaxis. Bioinfomatics, 21(11), 2714–2721.

    Article  Google Scholar 

  • Epstein, J. M. (1999). Agent-based computational models and generative social science. Complexity, 4(5), 41–60.

    Article  Google Scholar 

  • Epstein, J.M., & Axtell, R. (1996). Growing artificial societies: Social science from the bottom up. Cambridge: MIT Press.

    Google Scholar 

  • Evans A. J. (2012). Uncertainty and error. In A. J. Heppenstall, A.T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 309–346). Dordrecht: Springer.

    Google Scholar 

  • Franklin, S., & Graesser, A. (1996). Is it an agent, or just a program?: A taxonomy for autonomous agent. In Proceedings of the Third International Workshop on Agent Theories, Architectures, and Languages (pp. 21–35). Springer.

    Google Scholar 

  • Gilbert, N., & Terna, P. (2000). How to build and use agent-based models in social science. Mind and Society, 1(1), 57–72.

    Article  Google Scholar 

  • Grimm, V., & Railsback, S.F. (2012). Designing, formulating and communicating agent-based models. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 361–377). Dordrecht: Springer.

    Google Scholar 

  • Gwynne, S., Galea, E. R., Lawrence, P. J., & Filippidis, L. (2001). Modelling occupant interaction with fire conditions using the building EXODUS evacuation model. Fire Safety Journal, 36(4), 327–357.

    Article  Google Scholar 

  • Haklay, M., O’Sullivan, D., Thurstain-Goodwin, M., & Schelhorn, T. (2001). “So go downtown”: Simulating pedestrian movement in town centres. Environment and Planning B, 28(3), 343–359.

    Article  Google Scholar 

  • Harland, K., & Heppenstall, A.J. (2012). Using agent-based models for education planning: Is the UK education system agent-based. In A. J. Heppenstall, A.T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 481–497). Dordrecht: Springer.

    Google Scholar 

  • Heppenstall, A. J., Evans, A. J., & Birkin, M. H. (2006) Application of multi-agent systems to modelling a dynamic, locally interacting retail market. Journal of Artificial Societies and Social Simulation, 9(3). Available at http://jasss.soc.surrey.ac.uk/9/3/2.html

  • Heppenstall, A. J., Evans, A. J., & Birkin, M. H. (2007). Genetic algorithm optimisation of a multi-agent system for simulating a retail market. Environment and Planning B, 34(6), 1051–1070.

    Article  Google Scholar 

  • Holland, J. H. (1995). Hidden order: How adaptation builds complexity. Reading: Addison-Wesley.

    Google Scholar 

  • Ilachinski, A. (1997). Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An artificial-life approach to land combat. Alexandria: Center for Naval Analyses.

    Google Scholar 

  • Iltanen, S. (2012). Cellular automata in urban spatial modelling. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 69–84). Dordrecht: Springer.

    Google Scholar 

  • Jackson, J., Forest, B., & Sengupta, R. (2008). Agent-based simulation of urban residential dynamics and land rent change in a gentrifying area of Boston. Transactions in GIS, 12(4), 475–491.

    Article  Google Scholar 

  • Johnasson, A., & Kretz, T. (2012). Applied pedestrian modelling. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 451–462). Dordrecht: Springer.

    Google Scholar 

  • Kennedy, B. (2012). Accounting for human behaviour in agent-based models. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 167–179). Dordrecht: Springer.

    Google Scholar 

  • Kohler, T.A., Kresl, J., Van Wes, Q., Carr, E., & Wilshusen, R.H. (2000). Be there then: A modeling approach to settlement determinants and spatial efficiency among late ancestral Pueblo populations of the Mesa Verde Region, U.S. Southwest. In T.A. Kohler & G. J. Gumerman (Eds.), Dynamics in human and primate societies: Agent-based modeling of social and spatial processes (pp. 145–178). Oxford: Oxford University Press.

    Google Scholar 

  • Kollman, K., Miller, J. H., & Page, S. E. (1992). Adaptive parties in spatial elections. American Political Science Review, 86(4), 929–937.

    Article  Google Scholar 

  • Kornhauser, D., Wilensky, U., & Rand, D. (2009). Design guidelines for agent based model visualization. Journal of Artificial Societies and Social Simulation, 12(2). Available at http://jasss.soc.surrey.ac.uk/12/2/1.html

  • Kreft, J. U., Booth, G., & Wimpenny, W. T. (1998). BacSim, a simulator for individual based modelling of bacterial colony growth. Microbiology, 144(12), 3275–3287.

    Article  Google Scholar 

  • Landis, J., & Zhang, M. (1998). The second generation of the California urban futures model. Part 2: Specification and calibration results of the land-use change submodel. Environment and Planning B, 25(6), 795–824.

    Article  Google Scholar 

  • Law, A. M., & Kelton, D. (1991). Simulation modelling and analysis (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Lee, D. B. (1973). Requiem for large-scale models. Journal of the American Institute of Planners, 39, 163–178.

    Article  Google Scholar 

  • Liu, Y., & Feng, Y. (2012). A logistic based cellular automate model for continuous urban growth simulation: A case study of the Gold Coast City, Australia. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 643–662). Dordrecht: Springer.

    Google Scholar 

  • Lustick, I. (2002). PS-I: A user-friendly agent-based modelling platform for testing theories of political identity and political stability. Journal of Artificial Societies and Social Simulation, 5(3). Available at http://jasss.soc.surrey.ac.uk/5/3/7.html

  • Macal, C. M., & North, M. J. (2005). Tutorial on agent-based modelling and simulation. In M. E. Euhl, N. M. Steiger, F. B. Armstrong & J. A. Joines (Eds.), Proceedings of the 2005 Winter Simulation Conference (pp. 2–15), Orlando.

    Google Scholar 

  • Magliocco, N. R. (2012). Exploring coupled housing and land market interactions through an economic agent-based model (CHALMS). In A. J. Heppenstall, A.T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 543–568). Dordrecht: Springer.

    Google Scholar 

  • Malleson, N. S. (2012). Using agent-based models to simulate crime. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 411–434). Dordrecht: Springer.

    Google Scholar 

  • Malleson, N. S., Heppenstall, A. J., & See, L. M. (2010). Simulating burglary with an agent-based model. Computers, Environment and Urban Systems, 34(3), 236–250.

    Article  Google Scholar 

  • Mandelbrot, B. (1983) The fractal geometry of nature. Freeman: San Francisco.

    Google Scholar 

  • Manson, S. M., Sun, S., & Bonsal, D. (2012). Agent-based modeling and complexity. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 125–139). Dordrecht: Springer.

    Google Scholar 

  • Nagel, K. (2003). Traffic networks. In S. Bornholdt & H. Schuster (Eds.), Handbook of graphs and networks: From the genome to the internet (pp. 248–272). New York: Wiley.

    Google Scholar 

  • Nagel, K., & Rasmussen, S. (1994). Traffic at the edge of Chaos. In R. Brooks (Ed.), Artificial life IV (pp. 222–236). Cambridge, MA: MIT Press.

    Google Scholar 

  • Ngo, T. A., & See, L. M. (2012). An agent-based modelling application of shifting cultivation. In A.J. Heppenstall, A. T. Crooks, L.M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 611–627). Dordrecht: Springer.

    Google Scholar 

  • North, M. J., & Macal, C. M. (2007). Managing business complexity: Discovering strategic solutions with agent-based modelling and simulation. New York: Oxford University Press.

    Google Scholar 

  • North, M. J., Macal, C. M., & Vos, J. R. (2004). Terrorist organization modelling. North American Association for Computational Social and Organizational Science Conference 2004, Pittsburgh.

    Google Scholar 

  • O’Sullivan, D. (2001). Exploring spatial process dynamics using irregular cellular automaton models. Geographical Analysis, 33(1), 1–18.

    Article  Google Scholar 

  • Parker, D. C. (2005). Integration of geographic information systems and agent-based models of land use: Challenges and prospects. In D. J. Maguire, M. Batty, & M. F. Goodchild (Eds.), GIS, spatial analysis and modelling (pp. 403–422). Redlands: ESRI Press.

    Google Scholar 

  • Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J., & Deadman, P. (2003). Multi-agent systems for the simulation of land-use and land-cover change: A review. Annals of the Association of American Geographers, 93(2), 314–337.

    Article  Google Scholar 

  • Parker, D. C., Brown, D. G., Filatova, T., Riolo, R., Robinson, D. T., & Sun, S. (2012). Do land markets matter? A modeling ontology and experimental design to test the effects of land markets for an agent-based model of ex-urban residential land-use change. In A. J. Heppenstall, A.T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical s ystems (pp. 525–542). Dordrecht: Springer.

    Google Scholar 

  • Parry, H. R., & Bithnell, M. (2012). Large scale agent-based modelling: A review and guidelines for model scaling. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.) Agent-based models of geographical systems (pp. 525–542). Dordrecht: Springer.

    Google Scholar 

  • Parunak, H. V. D., Savit, R., & Riolo, R. L. (1998). Agent-based modelling vs. equation-based modelling: A case study and users’ guide. Proceedings of Multi-Agent Systems and Agent-Based Simulation (MABS’98) (pp. 10–25), Paris.

    Google Scholar 

  • Patel, A., & Hudson-Smith, A. (2012). Tools, techniques and methods for macro and microscopic simulation. In A. J. Heppenstall, A. T. Crooks, L.M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 379–407). Dordrecht: Springer.

    Google Scholar 

  • Schelling, T. C. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1(1), 143–186.

    Article  Google Scholar 

  • Tesfatsion, L. (2006). Agent-based computational economics: A constructive approach to economic theory. In L. Tesfatsion & K. L. Judd (Eds.), Handbook of computational economics: Agent-based computational economics (Vol. 2, pp. 831–880). Amsterdam: North-Holland.

    Google Scholar 

  • Topa, G. (2001). Social interactions, local spillovers and unemployment. The Review of Economic Studies, 68(2), 261–295.

    Article  Google Scholar 

  • Torrens, P. M. (2003). Automata-based models of urban systems. In P. A. Longley & M. Batty (Eds.), Advanced spatial analysis: The CASA book of GIS (pp. 61–81). Redlands: ESRI Press.

    Google Scholar 

  • Torrens, P. M. (2006). Simulating sprawl. Annals of the Association of American Geographers, 96(2), 248–275.

    Article  Google Scholar 

  • White, R., Engelen, G., & Uljee, I. (1997). The use of constrained cellular automata for high-resolution modelling of urban land use dynamics. Environment and Planning B, 24(3), 323–343.

    Article  Google Scholar 

  • Wilson, A. G. (2000). Complex spatial systems: The modelling foundations of urban and regional analysis. Harlow: Pearson Education.

    Google Scholar 

  • Wolfram, S. (2002). A new kind of science. Champaign: Wolfram Media. Champaign, IL.

    Google Scholar 

  • Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: Theory and practice. Knowledge Engineering Review, 10(2), 115–152.

    Article  Google Scholar 

  • Wu, B., Birkin, M., & Rees, P. (2008). A spatial microsimulation model with student agents. Computers Environment and Urban Systems, 32(6), 440–453.

    Article  Google Scholar 

  • Yang, Y., & Atkinson, P. M. (2005). An integrated ABM and GIS model of infectious disease transmission. In S. Batty (Ed.), Computers in Urban Planning and Urban Management (CUPUM), London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew T. Crooks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Crooks, A.T., Heppenstall, A.J. (2012). Introduction to Agent-Based Modelling. In: Heppenstall, A., Crooks, A., See, L., Batty, M. (eds) Agent-Based Models of Geographical Systems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8927-4_5

Download citation

Publish with us

Policies and ethics