Abstract
Recommender systems are supporting users in the identification of items that fulfill their wishes and needs and are also helping to foster consumer happiness. These systems have been successfully applied in different application domains—examples thereof are the recommendation of movies, books, digital cameras, points of interest, financial services, and software requirements. The major objectives of this chapter are to provide an overview of recommendation approaches including criteria when to use which algorithm, to show different applications of recommendation algorithms going beyond standard e-commerce scenarios and to discuss issues for future research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
twitter.com.
- 2.
autodesk.com.
- 3.
eventhelpr.com.
- 4.
- 5.
openreq.eu.
- 6.
eclipse.org.
- 7.
knowledgecheckr.com.
References
Abdollahpouri, H., Burke, R., & Mobasher, B. (2017). Recommender systems as multistakeholder environments. 25th Conference on User Modeling, Adaptation, and Personalization (pp. 347–348). Bratislava, Slovakia.
Adomavicius, G., Bockstedt, J., Curley, S., & Zhang, J. (2011). Recommender systems, consumer preferences, and anchoring effects. In: RecSys 2011 Workshop on Human Decision Making in Recommender Systems (pp. 35–42).
Atas, M., Felfernig, A., Stettinger, M., & Tran T. (2017). Beyond item recommendation: Using recommendations to stimulate information exchange in group decisions. In: 9th International Conference on Social Informatics (SocInfo’17) (pp. 368–377). Oxford, UK.
Barker, V., O’Connor, D., Bachant, J., & Soloway, E. (1989). Expert systems for configuration at digital: XCON and beyond. Communications of the ACM, 32(3), 298–318.
Batmaz, Z., Yurekli, A., Bilge, A., & Kaleli, C. (2019). A review on deep learning for recommender systems: challenges and remedies. Artificial Intelligence Review, 52, 1–37.
Berkovsky, S., Freyne, J., Coombe, M., & Bhandari, D. (2010). Recommender algorithms in activity motivating games. ACM Conference on Recommender Systems (RecSys’09) (pp. 175–182).
Berkovsky, S., Freyne, J., & Oinas-Kukkonen, H. (2012). Influencing individually: Fusing personalization and persuasion. ACM Transactions on Interactive Intelligent Systems, 2(2), 1–8.
Brocco M., & Groh, G. (2009). Team recommendation in open innovation networks. In ACM Conference on Recommender Systems (RecSys’09) (pp. 365–368). NY, USA.
Burke, R., & Abdollahpouri, H. (2016). Educational recommendation with multiple stakeholders. IEEE/WIC/ACM International Conference on Web Intelligence, Workshops (pp. 62–63). NE, USA: Omaha.
Burke, R., & Ramezani M. (2010). Matching recommendation technologies and domains. Recommender systems handbook(pp. 367–386).
Burke, R. (2000). Knowledge-based recommender systems. Encyclopedia of Library and Information Systems, 69(32), 180–200.
Chatzopoulou, G., Eirinaki, M., & Poyzotis, N. (2009). Query recommendations for interactive database exploration. In 21st Internationl Conference on Scientific and Statistical Database Management (pp. 3–18).
Chesbrough, H. (2003). Open innovation: The new imperative for creating and profiting from technology. Boston, MA: Harvard Business School Press.
Chung, R., Sundaram, D., & Srinivasan, A. (2007). Integrated personal recommender systems. 9th ACM International Conference on Electronic Commerce (pp. 65–74). MN, USA: Minneapolis.
Cosley, D., Lam, S., Albert, I., Konstan, J., & Riedl, J. (2003). Is seeing believing—how recommender system interfaces affect users’ opinions. In CHI03 (pp. 585–592).
Cubranic, D., Murphy, G., Singer, J., & Booth, K. (2005). Hipikat: A project memory for software development. IEEE Transactions of Software Engineering, 31(6), 446–465.
Dias, M., Locher, D., Li, M., El-Deredy, W., & Lisboa, P. (2008). The value of personalized recommender systems to e-business. In 2nd ACM Conference on Recommender Systems (RecSys’08) (pp. 291–294). Lausanne, Switzerland.
Ducheneaut, N., Patridge, K., Huang, Q., Price, B., & Roberts, M. (2009). Collaborative filtering is not enough? Experiments with a mixed-model recommender for leisure activities. 17th International Conference User Modeling, Adaptation, and Personalization (UMAP 2009) (pp. 295–306). Italy: Trento.
Fakhraee, S., & Fotouhi, F. (2011). TupleRecommender: A recommender system for relational databases. 22nd International Workshop on Database and Expert Systems Applications (DEXA) (pp. 549–553). France: Toulouse.
Falkner, A., Felfernig, A., & Haag, A. (2011). Recommendation technologies for configurable products. AI Magazine, 32(3), 99–108.
Fano, A., & Kurth, S. (2003). Personal choice point: helping users visualize what it means to buy a BMW. 8th International Conference on Intelligent User Interfaces (IUI 2003) (pp. 46–52). Miami, FL, USA.
Faulring, A., Mohnkern, K., Steinfeld, A., & Myers, B. (2009). The design and evaluation of user interfaces for the RADAR learning personal assistant. AI Magazine, 30(4), 74–84.
Felfernig, A., & Burke, R. (2008). Constraint-based recommender systems: technologies and research issues. 10th ACM International Conference on Electronic Commerce (ICEC’08) (pp. 17–26). Innsbruck, Austria.
Felfernig, A., Atas, M., Tran, I., Stettinger, M. (2016). Towards group-based configuration. In International Workshop on Configuration 2016 (ConfWS’16) (pp. 69–72). Toulouse, France.
Felfernig, A., Boratto, L., Stettinger, M., & Tkalcic, M. (2018a). Group Recommender Systems. Springer.
Felfernig, A., Friedrich, G., Schubert, M., Mandl, M., Mairitsch, M., & Teppan, E. (2009). Plausible repairs for inconsistent requirements. In IJCAI’09, (pp. 791–796). Pasadena, CA.
Felfernig, A., Gruber, I., Brandner, G., Blazek, P., & Stettinger, M. (2018b). Customizing events with EventHelpR. In 8th International Conference on Mass Customization and Personalization (MCP-CE 2018) (pp. 88–91). Novi Sad, Serbia.
Felfernig, A., Jeran, M., Ninaus, G., Reinfrank, F., Reiterer, S. (2013). Toward the next generation of recommender systems: applications and research challenges. In Multimedia services in intelligent environments, smart innovation, systems and technologies (pp. 81–98). Springer.
Felfernig, A., Mandl, M., Pum, A., & Schubert, M. (2010). Empirical knowledge engineering: Cognitive aspects in the development of constraint-based recommenders. 23rd International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA/AIE 2010) (pp. 631–640). Cordoba, Spain.
Felfernig, A., Ninaus, G., Grabner, H., Reinfrank, E., Weninger, L., Pagano, D., & Maalej, W. (2013). An overview of recommender systems in requirements engineering. In Managing Requirements Knowledge (pp. 315–332). Springer.
Felfernig, A., Reinfrank, F., & Ninaus, G. (2012). Resolving anomalies in feature models. 20th International Symposium on Methodologies for Intelligent Systems (pp. 1–10). Macau, China
Felfernig, A., Schubert, M., Zehentner, C. (2011). An efficient diagnosis algorithm for inconsistent constraint sets. Artificial Intelligence for Engineering Design, Analysis, and Manufacturing (AIEDAM), 25(2), 175–184.
Felfernig, A., Stettinger, M., Atas, M., Samer, R., Nerlich, J., Scholz, S., Tiihonen, J., Raatikainen, M. (2018d). Towards utility-based prioritization of requirements in open source environments. In 26th IEEE Conference on Requirements Engineering (pp. 406–411). Banff, Canada: ACM.
Felfernig, A., Stettinger, M., Wundara, M., & Stanik, C. (2019). Ai in public administration. In Handbuch e-Government (pp. 491–504). Springer
Felfernig, A., Friedrich, G., Jannach, D., & Zanker, M. (2006). An integrated environment for the development of knowledge-based recommender applications. International Journal of Electronic Commerce (IJEC), 11(2), 11–34.
Felfernig, A., Polat-Erdeniz, S., Uran, C., Reiterer, S., Atas, M., Tran, T., et al. (2018). An overview of recommender systems in the Internet of Things. Journal of Intelligent Information Systems (JIIS), 52, 285–309.
Felfernig, A., Zehentner, C., Ninaus, G., Grabner, H., Maalej, W., Pagano, D., et al. (2011). Group decision support for requirements negotiation. Springer Lecture Notes in Computer Science, 7138, 1–12.
Fogg, B. J. (2003). Persuasive technology—Using computers to change what we think and do. Morgan Kaufmann Publishers.
Foster, M., & Oberlander, J. (2010). User preferences can drive facial expressions: Evaluating an embodied conversational agent in a recommender dialog system. User Modeling and User-Adapted Interaction (UMUAI), 20(4), 341–381.
Fucci, D., C. Palomares, X. Franch, D. Costal, M. Raatikainen, M. Stettinger, Z. Kurtanović, T. Kojo, L. Koenig, A. Falkner, G. Schenner, F. Brasca, T. Männistö, A. Felfernig, and W. Maalej. Needs and challenges for a platform to support large-scale requirements engineering: a multiple-case study. In 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM’18), pages 1–10, Oulu Finland, 2018.
Garcia-Molina, H., Koutrika, G., & Parameswaran, A. (2011). Information seeking: convergence of search, recommendations, and advertising. Communications of the ACM, 54(11), 121–130.
Golbeck, J. (2009). Computing with social trust. Springer.
Goldberg, D., Nichols, D., Oki, B., & Terry, D. (1992). Using collaborative filtering to weave an information Tapestry. Communications of the ACM, 35(12), 61–70.
Hammer, S., Kim, J., André, E. (2010). MED-StyleR: METABO diabetes-lifestyle recommender. In 4th ACM Conference on Recommender Systems (pp. 285–288). Barcelona, Spain.
Happel, H., & Maalej, W. (2008). Potentials and challenges of recommendation systems for software engineering. In International Workshop on Recommendation Systems for Software Engineering (pp. 11–15), Atlanta, GA, USA.
Herlocker, J., Konstan, J., Riedl, J. (2000). Explaining collaborative filtering recommendations. In ACM Conference on Computer-Supported Cooperative Work (pp. 241–250). Philadelphia, PA, USA.
Hoens, T., Blanton,M., Chawla N. (2010). Reliable medical recommendation systems with patient privacy. 1st ACM International Health Informatics Symposium (IHI 2010) (pp. 173–182). Arlington, Virginia, USA.
Hofmann, H., & Lehner, F. (2001). Requirements engineering as a success factor in software projects. IEEE Software, 18(4), 58–66.
Holmes, R., Walker, R., & Murphy, G. (2006). Approximate structural context matching: An approach to recommend relevant examples. IEEE Transactions on Software Engineering, 32(12), 952–970.
Huang, Y., Chang, Y., Sandnes, F. (2010). Experiences with RFID-based interactive learning in museums. International Journal of Autonomous and Adaptive Communication Systems, 3(1), 59–74.
Jameson, A., Willemsen, M., Felfernig, A., de Gemmis, M. Lops, P., Semeraro, G., & Chen, L. (2015). Human decision making and recommender systems. In Recommender Systems Handbook (pp. 619–655). Springer.
Jannach, D., Bundgaard-Joergensen, U. (2007). SAT: A Web-based interactive advisor for ivestor-ready business plans. In International Conference on e-Business (ICE-B 2007) (pp. 99–106).
Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G. (2010). Recommender systems—An introduction. Cambridge University Press
Janssen, J., Broek, E., & Westerink, J. (2011). Tune in to your emotions: a robust personalized affective music player. User Modeling and User-Adapted Interaction (UMUAI), 22(3), 255–279.
Kapoor, N., Chen, J., Butler, J., Fouty, G., Stemper, J., Riedl, J., & Konstan. J. (2007). Techlens: a researcher’s desktop. In 1st Conference on Recommender Systems (pp. 183–184). Minneapolis, Minnesota, USA.
Kersten, M., Murphy, G. (2010). Using task context to improve programmer productivity. In 14th ACM SIGSOFT Intl. Symposium on Foundations of Software Engineering (pp. 1–11).
Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., & Riedl, J. (1997). GroupLens: applying collaborative filtering to Usenet news. Communications of the ACM, 40(3), 77–87.
Konstan, J., & Riedl, J. (2012). Recommender systems: From algorithms to user experience. User Modeling and User-Adapted Interaction (UMUAI), 22(1), 101–123.
Konstan, J., & Riedl, J. (2012). Recommender systems: From algorithms to user experience. User Modeling and User-Adapted Interaction (UMUAI), 22(1–2), 101–123.
Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. IEEE Computer, 42(8), 30–37.
Lee, T., Park, Y., & Park, Y. T. (2008). A time-based approach to effective recommender systems using implicit feedback. Expert Systems with Applications, 34(4), 3055–3062.
Leitner, G., Fercher, A., Felfernig, A., & Hitz, M. (2012). Reducing the entry threshold of AAL systems: Preliminary results from Casa Vecchia. 13th Intlernational Conference on Computers Helping People with Special Needs (pp. 709–715). Linz, Austria.
LeMay, M., Haas, J., & Gunter, C. (2009). Collaborative recommender systems for building automation. Hawaii International Conference on System Sciences (pp. 1–10). Waikoloa, Hawaii, USA.
Li, W., Matejka, J., Grossmann, T., & Fitzmaurice, G. (2015). Deploying community commands: A software command recommender system case study. AI Magazine, 36(3), 19–34.
Lin, C., Shen, X., Chen, S., Zhu, M., & Xiao, Y. (2019). Non-compensatory psychological models for recommender systems. In: 33rd AAAI Conference on Artificial Intelligence (AAAI-19) (pp. 4304–4311). Honolulu, Hawaii, USA
Linden, G., Smith, B. & York, J. (2003). Amazon.com Recommendations—Item-to-item collaborative filtering. IEEE Internet Computing, 7(1), 76–80.
Mandl, M., Felfernig, A., Tiihonen, J., & Isak, K. (2011). Status quo bias in configuration systems. 24th Intlernational Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems (IEA/AIE 2011) (pp. 105–114). Syracuse, NY, USA.
Martin, F., Donaldson, J., Ashenfelter, A., Torrens, M., & Hangartner, R. (2011). The big promise of recommender systems. AI Magazine, 32(3), 19–27.
Masthoff, J. (2011). Group recommender systems: Combining individual models. Recommender Systems Handbook (pp. 677–702).
McCarey, F., Cinneide, M., & Kushmerick, N. (2005). Rascal—A recommender agent for agile reuse. Artificial Intelligence Review, 24(3–4), 253–273.
McCarthy, K., Salamo, M., Coyle, L., McGinty, L., Smyth, B. & Nixon, P. (2006). Group recommender systems: a critiquing based approach. In International Conference on Intelligent User Interfaces (IUI’06) (pp. 267–269), Sydney, Australia.
Misirli, A., Bener, A., & Kale, R. (2011). AI-based software defect predictors: applications and benefits in a case study. AI Magazine, 32(2), 57–68.
Mobasher, B., & Cleland-Huang, J. (2011). Recommender systems in requirements engineering. AI Magazine, 32(3), 81–89.
Pazzani, M., & Billsus, D. (1997). Learning and revising user profiles: The identification of interesting web sites. Machine learning, 27, 313–331.
Peischl, B., Zanker, M., Nica, M., & Schmid, W. (2010). Constraint-based recommendation for software project effort estimation. Journal of Emerging Technologies in Web Intelligence, 2(4), 282–290.
Pinxteren, Y., Gelijnse, G., & Kamsteeg, P. (2011). Deriving a recipe similarity measure for recommending healthful meals. 16th International Conference on Intelligent User Interfaces (pp. 105–114). Palo Alto, CA, USA.
Polat Erdeniz, S., Felfernig, A., & Atas, M. (2019a). Learned constraint ordering for consistency based direct diagnosis. In International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (pp. 347–359). Graz, Austria.
Polat-Erdeniz, S., Felfernig, A. Atas, M., & Samer, R. (2019b). Matrix Factorization based heuristics for constraint-based recommenders. In 34th ACM/SIGAPP Symposium on Applied Computing (ACM/SAC’19) (pp. 1655–1662). ACM: Limassol, Cyprus.
Pribik, I., & Felfernig, A. (2012). Towards persuasive technology for software development environments: an empirical study. In Persuasive Technology Conference (Persuasive 2012) (pp. 227–238).
Ramiez-Gonzales, G., Munoz-Merino, P., & Delgado, K. (2010). A collaborative recommender system based on space-time similarities. IEEE Pervasive Computing, 9(3), 81–87.
Ramos, C., Augusto, J., & Shapiro, D. (2008). Ambient intelligence—The next step for artificial intelligence. IEEE Intelligent Systems, 23(2), 15–18.
Reiter, R. (1987). A theory of diagnosis from first principles. AI Journal, 23(1), 57–95.
Robillard, M., Walker, R., & Zimmermann, T. (2010). Recommendation systems for software engineering. IEEE Software, 27(4), 80–86.
Roy, L., & Mooney, R. (2004). Content-based book recommending using learning for text categorization. User Modeling and User-Adapted Interaction, 14(1), 37–85.
Sabin, D., & Weigel, R. (1998). Product configuration frameworks—A survey. IEEE Intelligent Systems, 14(4), 42–49.
Samer, R., Atas, M., Felfernig, A., Stettinger, M., Falkner, A. & Schenner, G. (2018). Group decision support for requirements management processes. In 20th Workshop on Configuration (pp. 19–24). Graz, Austria.
Samer, R., Stettinger, M., Atas, M., Felfernig, A., Ruhe, G., & Deshpande, G. (2019). New approaches to the identification of dependencies between requirements. In 31st International Conference on Tools with Artificial Intelligence (ICTAI’19) (pp. 1265–1270). Portland, OR, USA: IEEE.
Schafer, J., Konstan, J., & Riedl, J. (2011). E-commerce recommendation applications. Journal of Data Mining and Knowledge Discovery, 5(1–2), 115–153.
Smyth, B. (2018). Fast starters and slow finishers: A large-scale data analysis of pacing at the beginning and end of the marathon for recreational runners. Journal of Sports Analytics, 4(3), 229–242.
Sommerville, I. (2007). Software Engineering. Pearson.
Stanik, C., & Maalej, W. (2019). Requirements intelligence with OpenReq analytics. In 27th International Requirements Engineering Conference (RE’19) (pp. 482–483). Jeju Island, South Korea: IEEE.
Stettinger, M., Felfernig, A., Leitner, G., & Reiterer, S. (2015). Counteracting anchoring effects in group decision making. 23rd Conference on User Modeling, Adaptation, and Personalization (UMAP’15) (pp. 118–130). Dublin, Ireland.
Stettinger, M., Felfernig, A., Leitner, G., Reiterer, S., Jeran, M. (2015). Counteracting serial position effects in the CHOICLA group decision support environment. In 20th ACM Conference on Intelligent User Interfaces (IUI2015) (pp. 148–157). Atlanta, Georgia, USA.
Stettinger, M., Felfernig, A., Pribik, I., Tran, I., Samer, R., et al. (2020). KnowledgeCheckR: Intelligent techniques for counteracting forgetting. In 24th European Conference on AI, Santiago de Compostela, Spain.
Tayebi, M., Jamali, M., Ester, M., Glaesser, U., & Frank, R. (2011). Crimewalker: A recommender model for suspect investigation. In ACM Conference on Recommender Systems (RecSys’11) (pp. 173–180). Chicago, IL, USA.
Teppan, E., & Felfernig, A. (2012). Minimization of decoy effects in recommender result sets. Web Intelligence and Agent Systems, 1(4), 385–395.
Terveen, L., & Hill, W. Beyond Recommender systems: helping people help each other. In HCI in the New Millennium (pp. 487–509). Addison-Wesley.
Thiesse, F., & Michahelles, F. (2009). Building the Internet of Things using RFID. IEEE Internet Computing, 13(3), 48–55.
Thorleuchter, D., VanDenPoel, D., & Prinzie, A. (2010). Mining ideas from textual information. Expert Systems with Applications, 37(10), 7182–7188.
Tran, T., Atas, M., Le, V., Samer, R., & Stettinger, M. (2019). Towards social choice-based explanations in group recommender systems. 27th ACM Conference on User Modeling, Adaptation and Personalization (pp. 13–21). Larnaca, Cyprus.
Tran, T., Atas, M., Felfernig, A., & Stettinger, M. (2018). An overview of recommender systems in the healthy food domain. Journal of Intelligent Information Systems (JIIS), 50, 61–70.
Tuzhilin, A., Koren, Y. (2008). 2nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Price Competition (pp. 1–340).
Wilson, D., Leland, S., Godwin, K., Baxter, A., Levy, A., Smart, J., et al. (2009). SmartChoice: An online recommender system to support low-income families in public school choice. AI Magazine, 30(2), 46–58.
Winoto, P., & Tang, T. (2010). The role of user mood in movie recommendations. Expert Systems with Applications, 37(8), 6086–6092.
Wobcke, W., Krzywicki, A., Kim, Y., Cai, X., Bain, M., Compton, P., et al. (2015). A deployed people-to-people recommender system in online dating. AI Magazine, 36(3), 5–18.
Xu, S., Jiang, H., & Lau, F. (2008). Personalized online document, image and video recommendation via commodity eye-tracking. In ACM Conference on Recommender Systems (RecSys’08) (pp. 83–90).
Yuan, N., Zheng, Y., Zhang, L., & Xie, X. (2012). T-finder: A recommender system for finding passengers and vacant taxis. IEEE Transactions on Knowledge and Data Engineering (TKDE), 1–14.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Felfernig, A., Tran, T.N.T., Le, VM. (2021). Recommender Systems Beyond E-Commerce: Presence and Future. In: Dutta, T., Mandal, M.K. (eds) Consumer Happiness: Multiple Perspectives. Studies in Rhythm Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-33-6374-8_14
Download citation
DOI: https://doi.org/10.1007/978-981-33-6374-8_14
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-33-6373-1
Online ISBN: 978-981-33-6374-8
eBook Packages: EngineeringEngineering (R0)