[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Recommender Systems Beyond E-Commerce: Presence and Future

  • Chapter
  • First Online:
Consumer Happiness: Multiple Perspectives

Part of the book series: Studies in Rhythm Engineering ((SRE))

  • 1334 Accesses

Abstract

Recommender systems are supporting users in the identification of items that fulfill their wishes and needs and are also helping to foster consumer happiness. These systems have been successfully applied in different application domains—examples thereof are the recommendation of movies, books, digital cameras, points of interest, financial services, and software requirements. The major objectives of this chapter are to provide an overview of recommendation approaches including criteria when to use which algorithm, to show different applications of recommendation algorithms going beyond standard e-commerce scenarios and to discuss issues for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 127.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    twitter.com.

  2. 2.

    autodesk.com.

  3. 3.

    eventhelpr.com.

  4. 4.

    www.eclipse.org.

  5. 5.

    openreq.eu.

  6. 6.

    eclipse.org.

  7. 7.

    knowledgecheckr.com.

References

  • Abdollahpouri, H., Burke, R., & Mobasher, B. (2017). Recommender systems as multistakeholder environments. 25th Conference on User Modeling, Adaptation, and Personalization (pp. 347–348). Bratislava, Slovakia.

    Google Scholar 

  • Adomavicius, G., Bockstedt, J., Curley, S., & Zhang, J. (2011). Recommender systems, consumer preferences, and anchoring effects. In: RecSys 2011 Workshop on Human Decision Making in Recommender Systems (pp. 35–42).

    Google Scholar 

  • Atas, M., Felfernig, A., Stettinger, M., & Tran T. (2017). Beyond item recommendation: Using recommendations to stimulate information exchange in group decisions. In: 9th International Conference on Social Informatics (SocInfo’17) (pp. 368–377). Oxford, UK.

    Google Scholar 

  • Barker, V., O’Connor, D., Bachant, J., & Soloway, E. (1989). Expert systems for configuration at digital: XCON and beyond. Communications of the ACM, 32(3), 298–318.

    Article  Google Scholar 

  • Batmaz, Z., Yurekli, A., Bilge, A., & Kaleli, C. (2019). A review on deep learning for recommender systems: challenges and remedies. Artificial Intelligence Review, 52, 1–37.

    Article  Google Scholar 

  • Berkovsky, S., Freyne, J., Coombe, M., & Bhandari, D. (2010). Recommender algorithms in activity motivating games. ACM Conference on Recommender Systems (RecSys’09) (pp. 175–182).

    Google Scholar 

  • Berkovsky, S., Freyne, J., & Oinas-Kukkonen, H. (2012). Influencing individually: Fusing personalization and persuasion. ACM Transactions on Interactive Intelligent Systems, 2(2), 1–8.

    Article  Google Scholar 

  • Brocco M., & Groh, G. (2009). Team recommendation in open innovation networks. In ACM Conference on Recommender Systems (RecSys’09) (pp. 365–368). NY, USA.

    Google Scholar 

  • Burke, R., & Abdollahpouri, H. (2016). Educational recommendation with multiple stakeholders. IEEE/WIC/ACM International Conference on Web Intelligence, Workshops (pp. 62–63). NE, USA: Omaha.

    Google Scholar 

  • Burke, R., & Ramezani M. (2010). Matching recommendation technologies and domains. Recommender systems handbook(pp. 367–386).

    Google Scholar 

  • Burke, R. (2000). Knowledge-based recommender systems. Encyclopedia of Library and Information Systems, 69(32), 180–200.

    Google Scholar 

  • Chatzopoulou, G., Eirinaki, M., & Poyzotis, N. (2009). Query recommendations for interactive database exploration. In 21st Internationl Conference on Scientific and Statistical Database Management (pp. 3–18).

    Google Scholar 

  • Chesbrough, H. (2003). Open innovation: The new imperative for creating and profiting from technology. Boston, MA: Harvard Business School Press.

    Google Scholar 

  • Chung, R., Sundaram, D., & Srinivasan, A. (2007). Integrated personal recommender systems. 9th ACM International Conference on Electronic Commerce (pp. 65–74). MN, USA: Minneapolis.

    Google Scholar 

  • Cosley, D., Lam, S., Albert, I., Konstan, J., & Riedl, J. (2003). Is seeing believing—how recommender system interfaces affect users’ opinions. In CHI03 (pp. 585–592).

    Google Scholar 

  • Cubranic, D., Murphy, G., Singer, J., & Booth, K. (2005). Hipikat: A project memory for software development. IEEE Transactions of Software Engineering, 31(6), 446–465.

    Google Scholar 

  • Dias, M., Locher, D., Li, M., El-Deredy, W., & Lisboa, P. (2008). The value of personalized recommender systems to e-business. In 2nd ACM Conference on Recommender Systems (RecSys’08) (pp. 291–294). Lausanne, Switzerland.

    Google Scholar 

  • Ducheneaut, N., Patridge, K., Huang, Q., Price, B., & Roberts, M. (2009). Collaborative filtering is not enough? Experiments with a mixed-model recommender for leisure activities. 17th International Conference User Modeling, Adaptation, and Personalization (UMAP 2009) (pp. 295–306). Italy: Trento.

    Google Scholar 

  • Fakhraee, S., & Fotouhi, F. (2011). TupleRecommender: A recommender system for relational databases. 22nd International Workshop on Database and Expert Systems Applications (DEXA) (pp. 549–553). France: Toulouse.

    Google Scholar 

  • Falkner, A., Felfernig, A., & Haag, A. (2011). Recommendation technologies for configurable products. AI Magazine, 32(3), 99–108.

    Article  Google Scholar 

  • Fano, A., & Kurth, S. (2003). Personal choice point: helping users visualize what it means to buy a BMW. 8th International Conference on Intelligent User Interfaces (IUI 2003) (pp. 46–52). Miami, FL, USA.

    Google Scholar 

  • Faulring, A., Mohnkern, K., Steinfeld, A., & Myers, B. (2009). The design and evaluation of user interfaces for the RADAR learning personal assistant. AI Magazine, 30(4), 74–84.

    Article  Google Scholar 

  • Felfernig, A., & Burke, R. (2008). Constraint-based recommender systems: technologies and research issues. 10th ACM International Conference on Electronic Commerce (ICEC’08) (pp. 17–26). Innsbruck, Austria.

    Google Scholar 

  • Felfernig, A., Atas, M., Tran, I., Stettinger, M. (2016). Towards group-based configuration. In International Workshop on Configuration 2016 (ConfWS’16) (pp. 69–72). Toulouse, France.

    Google Scholar 

  • Felfernig, A., Boratto, L., Stettinger, M., & Tkalcic, M. (2018a). Group Recommender Systems. Springer.

    Google Scholar 

  • Felfernig, A., Friedrich, G., Schubert, M., Mandl, M., Mairitsch, M., & Teppan, E. (2009). Plausible repairs for inconsistent requirements. In IJCAI’09, (pp. 791–796). Pasadena, CA.

    Google Scholar 

  • Felfernig, A., Gruber, I., Brandner, G., Blazek, P., & Stettinger, M. (2018b). Customizing events with EventHelpR. In 8th International Conference on Mass Customization and Personalization (MCP-CE 2018) (pp. 88–91). Novi Sad, Serbia.

    Google Scholar 

  • Felfernig, A., Jeran, M., Ninaus, G., Reinfrank, F., Reiterer, S. (2013). Toward the next generation of recommender systems: applications and research challenges. In Multimedia services in intelligent environments, smart innovation, systems and technologies (pp. 81–98). Springer.

    Google Scholar 

  • Felfernig, A., Mandl, M., Pum, A., & Schubert, M. (2010). Empirical knowledge engineering: Cognitive aspects in the development of constraint-based recommenders. 23rd International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA/AIE 2010) (pp. 631–640). Cordoba, Spain.

    Google Scholar 

  • Felfernig, A., Ninaus, G., Grabner, H., Reinfrank, E., Weninger, L., Pagano, D., & Maalej, W. (2013). An overview of recommender systems in requirements engineering. In Managing Requirements Knowledge (pp. 315–332). Springer.

    Google Scholar 

  • Felfernig, A., Reinfrank, F., & Ninaus, G. (2012). Resolving anomalies in feature models. 20th International Symposium on Methodologies for Intelligent Systems (pp. 1–10). Macau, China

    Google Scholar 

  • Felfernig, A., Schubert, M., Zehentner, C. (2011). An efficient diagnosis algorithm for inconsistent constraint sets. Artificial Intelligence for Engineering Design, Analysis, and Manufacturing (AIEDAM), 25(2), 175–184.

    Google Scholar 

  • Felfernig, A., Stettinger, M., Atas, M., Samer, R., Nerlich, J., Scholz, S., Tiihonen, J., Raatikainen, M. (2018d). Towards utility-based prioritization of requirements in open source environments. In 26th IEEE Conference on Requirements Engineering (pp. 406–411). Banff, Canada: ACM.

    Google Scholar 

  • Felfernig, A., Stettinger, M., Wundara, M., & Stanik, C. (2019). Ai in public administration. In Handbuch e-Government (pp. 491–504). Springer

    Google Scholar 

  • Felfernig, A., Friedrich, G., Jannach, D., & Zanker, M. (2006). An integrated environment for the development of knowledge-based recommender applications. International Journal of Electronic Commerce (IJEC), 11(2), 11–34.

    Article  Google Scholar 

  • Felfernig, A., Polat-Erdeniz, S., Uran, C., Reiterer, S., Atas, M., Tran, T., et al. (2018). An overview of recommender systems in the Internet of Things. Journal of Intelligent Information Systems (JIIS), 52, 285–309.

    Article  Google Scholar 

  • Felfernig, A., Zehentner, C., Ninaus, G., Grabner, H., Maalej, W., Pagano, D., et al. (2011). Group decision support for requirements negotiation. Springer Lecture Notes in Computer Science, 7138, 1–12.

    Google Scholar 

  • Fogg, B. J. (2003). Persuasive technology—Using computers to change what we think and do. Morgan Kaufmann Publishers.

    Google Scholar 

  • Foster, M., & Oberlander, J. (2010). User preferences can drive facial expressions: Evaluating an embodied conversational agent in a recommender dialog system. User Modeling and User-Adapted Interaction (UMUAI), 20(4), 341–381.

    Article  Google Scholar 

  • Fucci, D., C. Palomares, X. Franch, D. Costal, M. Raatikainen, M. Stettinger, Z. Kurtanović, T. Kojo, L. Koenig, A. Falkner, G. Schenner, F. Brasca, T. Männistö, A. Felfernig, and W. Maalej. Needs and challenges for a platform to support large-scale requirements engineering: a multiple-case study. In 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM’18), pages 1–10, Oulu Finland, 2018.

    Google Scholar 

  • Garcia-Molina, H., Koutrika, G., & Parameswaran, A. (2011). Information seeking: convergence of search, recommendations, and advertising. Communications of the ACM, 54(11), 121–130.

    Article  Google Scholar 

  • Golbeck, J. (2009). Computing with social trust. Springer.

    Google Scholar 

  • Goldberg, D., Nichols, D., Oki, B., & Terry, D. (1992). Using collaborative filtering to weave an information Tapestry. Communications of the ACM, 35(12), 61–70.

    Article  Google Scholar 

  • Hammer, S., Kim, J., André, E. (2010). MED-StyleR: METABO diabetes-lifestyle recommender. In 4th ACM Conference on Recommender Systems (pp. 285–288). Barcelona, Spain.

    Google Scholar 

  • Happel, H., & Maalej, W. (2008). Potentials and challenges of recommendation systems for software engineering. In International Workshop on Recommendation Systems for Software Engineering (pp. 11–15), Atlanta, GA, USA.

    Google Scholar 

  • Herlocker, J., Konstan, J., Riedl, J. (2000). Explaining collaborative filtering recommendations. In ACM Conference on Computer-Supported Cooperative Work (pp. 241–250). Philadelphia, PA, USA.

    Google Scholar 

  • Hoens, T., Blanton,M., Chawla N. (2010). Reliable medical recommendation systems with patient privacy. 1st ACM International Health Informatics Symposium (IHI 2010) (pp. 173–182). Arlington, Virginia, USA.

    Google Scholar 

  • Hofmann, H., & Lehner, F. (2001). Requirements engineering as a success factor in software projects. IEEE Software, 18(4), 58–66.

    Article  Google Scholar 

  • Holmes, R., Walker, R., & Murphy, G. (2006). Approximate structural context matching: An approach to recommend relevant examples. IEEE Transactions on Software Engineering, 32(12), 952–970.

    Article  Google Scholar 

  • Huang, Y., Chang, Y., Sandnes, F. (2010). Experiences with RFID-based interactive learning in museums. International Journal of Autonomous and Adaptive Communication Systems, 3(1), 59–74.

    Google Scholar 

  • Jameson, A., Willemsen, M., Felfernig, A., de Gemmis, M. Lops, P., Semeraro, G., & Chen, L. (2015). Human decision making and recommender systems. In Recommender Systems Handbook (pp. 619–655). Springer.

    Google Scholar 

  • Jannach, D., Bundgaard-Joergensen, U. (2007). SAT: A Web-based interactive advisor for ivestor-ready business plans. In International Conference on e-Business (ICE-B 2007) (pp. 99–106).

    Google Scholar 

  • Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G. (2010). Recommender systems—An introduction. Cambridge University Press

    Google Scholar 

  • Janssen, J., Broek, E., & Westerink, J. (2011). Tune in to your emotions: a robust personalized affective music player. User Modeling and User-Adapted Interaction (UMUAI), 22(3), 255–279.

    Article  Google Scholar 

  • Kapoor, N., Chen, J., Butler, J., Fouty, G., Stemper, J., Riedl, J., & Konstan. J. (2007). Techlens: a researcher’s desktop. In 1st Conference on Recommender Systems (pp. 183–184). Minneapolis, Minnesota, USA.

    Google Scholar 

  • Kersten, M., Murphy, G. (2010). Using task context to improve programmer productivity. In 14th ACM SIGSOFT Intl. Symposium on Foundations of Software Engineering (pp. 1–11).

    Google Scholar 

  • Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., & Riedl, J. (1997). GroupLens: applying collaborative filtering to Usenet news. Communications of the ACM, 40(3), 77–87.

    Article  Google Scholar 

  • Konstan, J., & Riedl, J. (2012). Recommender systems: From algorithms to user experience. User Modeling and User-Adapted Interaction (UMUAI), 22(1), 101–123.

    Article  Google Scholar 

  • Konstan, J., & Riedl, J. (2012). Recommender systems: From algorithms to user experience. User Modeling and User-Adapted Interaction (UMUAI), 22(1–2), 101–123.

    Article  Google Scholar 

  • Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. IEEE Computer, 42(8), 30–37.

    Article  Google Scholar 

  • Lee, T., Park, Y., & Park, Y. T. (2008). A time-based approach to effective recommender systems using implicit feedback. Expert Systems with Applications, 34(4), 3055–3062.

    Article  Google Scholar 

  • Leitner, G., Fercher, A., Felfernig, A., & Hitz, M. (2012). Reducing the entry threshold of AAL systems: Preliminary results from Casa Vecchia. 13th Intlernational Conference on Computers Helping People with Special Needs (pp. 709–715). Linz, Austria.

    Google Scholar 

  • LeMay, M., Haas, J., & Gunter, C. (2009). Collaborative recommender systems for building automation. Hawaii International Conference on System Sciences (pp. 1–10). Waikoloa, Hawaii, USA.

    Google Scholar 

  • Li, W., Matejka, J., Grossmann, T., & Fitzmaurice, G. (2015). Deploying community commands: A software command recommender system case study. AI Magazine, 36(3), 19–34.

    Article  Google Scholar 

  • Lin, C., Shen, X., Chen, S., Zhu, M., & Xiao, Y. (2019). Non-compensatory psychological models for recommender systems. In: 33rd AAAI Conference on Artificial Intelligence (AAAI-19) (pp. 4304–4311). Honolulu, Hawaii, USA

    Google Scholar 

  • Linden, G., Smith, B. & York, J. (2003). Amazon.com Recommendations—Item-to-item collaborative filtering. IEEE Internet Computing, 7(1), 76–80.

    Google Scholar 

  • Mandl, M., Felfernig, A., Tiihonen, J., & Isak, K. (2011). Status quo bias in configuration systems. 24th Intlernational Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems (IEA/AIE 2011) (pp. 105–114). Syracuse, NY, USA.

    Google Scholar 

  • Martin, F., Donaldson, J., Ashenfelter, A., Torrens, M., & Hangartner, R. (2011). The big promise of recommender systems. AI Magazine, 32(3), 19–27.

    Article  Google Scholar 

  • Masthoff, J. (2011). Group recommender systems: Combining individual models. Recommender Systems Handbook (pp. 677–702).

    Google Scholar 

  • McCarey, F., Cinneide, M., & Kushmerick, N. (2005). Rascal—A recommender agent for agile reuse. Artificial Intelligence Review, 24(3–4), 253–273.

    Article  Google Scholar 

  • McCarthy, K., Salamo, M., Coyle, L., McGinty, L., Smyth, B. & Nixon, P. (2006). Group recommender systems: a critiquing based approach. In International Conference on Intelligent User Interfaces (IUI’06) (pp. 267–269), Sydney, Australia.

    Google Scholar 

  • Misirli, A., Bener, A., & Kale, R. (2011). AI-based software defect predictors: applications and benefits in a case study. AI Magazine, 32(2), 57–68.

    Article  Google Scholar 

  • Mobasher, B., & Cleland-Huang, J. (2011). Recommender systems in requirements engineering. AI Magazine, 32(3), 81–89.

    Article  Google Scholar 

  • Pazzani, M., & Billsus, D. (1997). Learning and revising user profiles: The identification of interesting web sites. Machine learning, 27, 313–331.

    Article  Google Scholar 

  • Peischl, B., Zanker, M., Nica, M., & Schmid, W. (2010). Constraint-based recommendation for software project effort estimation. Journal of Emerging Technologies in Web Intelligence, 2(4), 282–290.

    Article  Google Scholar 

  • Pinxteren, Y., Gelijnse, G., & Kamsteeg, P. (2011). Deriving a recipe similarity measure for recommending healthful meals. 16th International Conference on Intelligent User Interfaces (pp. 105–114). Palo Alto, CA, USA.

    Google Scholar 

  • Polat Erdeniz, S., Felfernig, A., & Atas, M. (2019a). Learned constraint ordering for consistency based direct diagnosis. In International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (pp. 347–359). Graz, Austria.

    Google Scholar 

  • Polat-Erdeniz, S., Felfernig, A. Atas, M., & Samer, R. (2019b). Matrix Factorization based heuristics for constraint-based recommenders. In 34th ACM/SIGAPP Symposium on Applied Computing (ACM/SAC’19) (pp. 1655–1662). ACM: Limassol, Cyprus.

    Google Scholar 

  • Pribik, I., & Felfernig, A. (2012). Towards persuasive technology for software development environments: an empirical study. In Persuasive Technology Conference (Persuasive 2012) (pp. 227–238).

    Google Scholar 

  • Ramiez-Gonzales, G., Munoz-Merino, P., & Delgado, K. (2010). A collaborative recommender system based on space-time similarities. IEEE Pervasive Computing, 9(3), 81–87.

    Article  Google Scholar 

  • Ramos, C., Augusto, J., & Shapiro, D. (2008). Ambient intelligence—The next step for artificial intelligence. IEEE Intelligent Systems, 23(2), 15–18.

    Article  Google Scholar 

  • Reiter, R. (1987). A theory of diagnosis from first principles. AI Journal, 23(1), 57–95.

    MathSciNet  MATH  Google Scholar 

  • Robillard, M., Walker, R., & Zimmermann, T. (2010). Recommendation systems for software engineering. IEEE Software, 27(4), 80–86.

    Article  Google Scholar 

  • Roy, L., & Mooney, R. (2004). Content-based book recommending using learning for text categorization. User Modeling and User-Adapted Interaction, 14(1), 37–85.

    Google Scholar 

  • Sabin, D., & Weigel, R. (1998). Product configuration frameworks—A survey. IEEE Intelligent Systems, 14(4), 42–49.

    Article  Google Scholar 

  • Samer, R., Atas, M., Felfernig, A., Stettinger, M., Falkner, A. & Schenner, G. (2018). Group decision support for requirements management processes. In 20th Workshop on Configuration (pp. 19–24). Graz, Austria.

    Google Scholar 

  • Samer, R., Stettinger, M., Atas, M., Felfernig, A., Ruhe, G., & Deshpande, G. (2019). New approaches to the identification of dependencies between requirements. In 31st International Conference on Tools with Artificial Intelligence (ICTAI’19) (pp. 1265–1270). Portland, OR, USA: IEEE.

    Google Scholar 

  • Schafer, J., Konstan, J., & Riedl, J. (2011). E-commerce recommendation applications. Journal of Data Mining and Knowledge Discovery, 5(1–2), 115–153.

    MATH  Google Scholar 

  • Smyth, B. (2018). Fast starters and slow finishers: A large-scale data analysis of pacing at the beginning and end of the marathon for recreational runners. Journal of Sports Analytics, 4(3), 229–242.

    Article  Google Scholar 

  • Sommerville, I. (2007). Software Engineering. Pearson.

    Google Scholar 

  • Stanik, C., & Maalej, W. (2019). Requirements intelligence with OpenReq analytics. In 27th International Requirements Engineering Conference (RE’19) (pp. 482–483). Jeju Island, South Korea: IEEE.

    Google Scholar 

  • Stettinger, M., Felfernig, A., Leitner, G., & Reiterer, S. (2015). Counteracting anchoring effects in group decision making. 23rd Conference on User Modeling, Adaptation, and Personalization (UMAP’15) (pp. 118–130). Dublin, Ireland.

    Google Scholar 

  • Stettinger, M., Felfernig, A., Leitner, G., Reiterer, S., Jeran, M. (2015). Counteracting serial position effects in the CHOICLA group decision support environment. In 20th ACM Conference on Intelligent User Interfaces (IUI2015) (pp. 148–157). Atlanta, Georgia, USA.

    Google Scholar 

  • Stettinger, M., Felfernig, A., Pribik, I., Tran, I., Samer, R., et al. (2020). KnowledgeCheckR: Intelligent techniques for counteracting forgetting. In 24th European Conference on AI, Santiago de Compostela, Spain.

    Google Scholar 

  • Tayebi, M., Jamali, M., Ester, M., Glaesser, U., & Frank, R. (2011). Crimewalker: A recommender model for suspect investigation. In ACM Conference on Recommender Systems (RecSys’11) (pp. 173–180). Chicago, IL, USA.

    Google Scholar 

  • Teppan, E., & Felfernig, A. (2012). Minimization of decoy effects in recommender result sets. Web Intelligence and Agent Systems, 1(4), 385–395.

    Article  Google Scholar 

  • Terveen, L., & Hill, W. Beyond Recommender systems: helping people help each other. In HCI in the New Millennium (pp. 487–509). Addison-Wesley.

    Google Scholar 

  • Thiesse, F., & Michahelles, F. (2009). Building the Internet of Things using RFID. IEEE Internet Computing, 13(3), 48–55.

    Article  Google Scholar 

  • Thorleuchter, D., VanDenPoel, D., & Prinzie, A. (2010). Mining ideas from textual information. Expert Systems with Applications, 37(10), 7182–7188.

    Article  Google Scholar 

  • Tran, T., Atas, M., Le, V., Samer, R., & Stettinger, M. (2019). Towards social choice-based explanations in group recommender systems. 27th ACM Conference on User Modeling, Adaptation and Personalization (pp. 13–21). Larnaca, Cyprus.

    Google Scholar 

  • Tran, T., Atas, M., Felfernig, A., & Stettinger, M. (2018). An overview of recommender systems in the healthy food domain. Journal of Intelligent Information Systems (JIIS), 50, 61–70.

    Google Scholar 

  • Tuzhilin, A., Koren, Y. (2008). 2nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Price Competition (pp. 1–340).

    Google Scholar 

  • Wilson, D., Leland, S., Godwin, K., Baxter, A., Levy, A., Smart, J., et al. (2009). SmartChoice: An online recommender system to support low-income families in public school choice. AI Magazine, 30(2), 46–58.

    Article  Google Scholar 

  • Winoto, P., & Tang, T. (2010). The role of user mood in movie recommendations. Expert Systems with Applications, 37(8), 6086–6092.

    Article  Google Scholar 

  • Wobcke, W., Krzywicki, A., Kim, Y., Cai, X., Bain, M., Compton, P., et al. (2015). A deployed people-to-people recommender system in online dating. AI Magazine, 36(3), 5–18.

    Article  Google Scholar 

  • Xu, S., Jiang, H., & Lau, F. (2008). Personalized online document, image and video recommendation via commodity eye-tracking. In ACM Conference on Recommender Systems (RecSys’08) (pp. 83–90).

    Google Scholar 

  • Yuan, N., Zheng, Y., Zhang, L., & Xie, X. (2012). T-finder: A recommender system for finding passengers and vacant taxis. IEEE Transactions on Knowledge and Data Engineering (TKDE), 1–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Felfernig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Felfernig, A., Tran, T.N.T., Le, VM. (2021). Recommender Systems Beyond E-Commerce: Presence and Future. In: Dutta, T., Mandal, M.K. (eds) Consumer Happiness: Multiple Perspectives. Studies in Rhythm Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-33-6374-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6374-8_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6373-1

  • Online ISBN: 978-981-33-6374-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics