[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A New Rabin-Type Cryptosystem with Modulus \(p^{2}q\)

  • Conference paper
  • First Online:
Applications and Techniques in Information Security (ATIS 2020)

Abstract

In 1979, Rabin introduced a variation of RSA using the encryption exponent 2, which has become popular because of its speed. Its drawback is decryption to four possible messages which has led to various ideas to identify the correct plaintext. This paper provides a new Rabin-type cryptosystem based on a modulus of the form \(p^{2}q\). Along with a theoretical proof that the decryption is correct, we provide a complete example. To demonstrate its efficiency, we compare runtime of our algorithms with those of two others with similar aims. We also conjecture that our scheme is secure against chosen ciphertext attacks because of our inclusion of Simplified Optimal Asymmetric Encryption Padding of messages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernstein, D.J.: The world’s fastest digital signature system (1997). http://groups.google.com/group/sci.crypt/msg/840e777ec0fc5679. Accessed 13 Oct 2020

  2. Bernstein, D.J.: RSA signatures and Rabin-Williams signatures: The state of the art (2008a) . https://cr.yp.to/sigs/rwsota-20080131.pdf. Accessed 13 Oct 2020

  3. Bernstein, D.J.: Proving tight security for Rabin-Williams signatures. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 70–87. Springer, Heidelberg (2008b). https://doi.org/10.1007/978-3-540-78967-3_5

    Chapter  Google Scholar 

  4. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0053428

    Chapter  Google Scholar 

  5. Boneh, D.: Simplified OAEP for the RSA and Rabin functions. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 275–291. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_1

    Chapter  Google Scholar 

  6. Boneh, D., Joux, A., Nguyen, P.Q.: Why textbook ElGamal and RSA encryption are insecure. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 30–43. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_3

    Chapter  Google Scholar 

  7. Elia, M., Piva, M., Schipani, D.: The Rabin cryptosystem revisited. Appl. Algebra Eng. Commun. Comput. 26(3), 251–275 (2014). https://doi.org/10.1007/s00200-014-0237-0

    Article  MathSciNet  MATH  Google Scholar 

  8. Mahad, Z., Asbullah, M.A., Ariffin, M.R.K.: Efficient methods to overcome Rabin cryptosystem decryption failure. Malays. J. Math. Sci. 11, 9–20 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Maplesoft. User Manual (2015). https://www.maplesoft.com/documentation_center/maple18/usermanual.pdf. Accessed 13 Oct 2020

  10. Menezes, J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography, p. 68. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  11. Nishioka, M., Satoh, H., Sakurai, K.: Design and analysis of fast provably secure public-key cryptosystems based on a modular squaring. In: Kim, K. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 81–102. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45861-1_8

    Chapter  MATH  Google Scholar 

  12. NIST. Approved hash function algorithms (2020). https://csrc.nist.gov/Projects/Hash-Functions. Accessed 13 Oct 2020

  13. Rabin, M.O.: Digitized signatures and public-key functions as intractable a factorization. Technical report LCS/TR-212, MIT (1979)

    Google Scholar 

  14. Shuai, M., Xiong, L., Wang, C., Yu, N.: A secure authentication scheme with forward secrecy for industrial internet of things using Rabin cryptosystem. Comput. Commun. 160, 215–227 (2020)

    Article  Google Scholar 

  15. Stack Overflow. Time complexity of MD5 (2017). https://stackoverflow.com/questions/43625569/time-complexity-of-md5. Accessed 13 Oct 2020

  16. VMware. Vmware Horizon Client (2020). https://www.vmware.com/. Accessed 17 Oct 2020

  17. Williams, H.C.: A modification of the RSA public-key encryption procedure. IEEE Trans. Inf. Theory 26(6), 726–729 (1980)

    Article  MathSciNet  Google Scholar 

  18. Xie, T., Liu, F., Feng, D.: Fast collision attack on MD5. IACR Cryptol. ePrint Arch. 2013, 170 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Digby Mooney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mooney, D., Batten, L.M., Zhang, L.Y. (2020). A New Rabin-Type Cryptosystem with Modulus \(p^{2}q\). In: Batina, L., Li, G. (eds) Applications and Techniques in Information Security. ATIS 2020. Communications in Computer and Information Science, vol 1338. Springer, Singapore. https://doi.org/10.1007/978-981-33-4706-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4706-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4705-2

  • Online ISBN: 978-981-33-4706-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics