Abstract
Image captioning and object detection are some of the most growing and popular research areas in the field of computer vision. Almost every upcoming technology uses vision in some way, and with various people researching in the field of object detection, many vision problems which seemed intractable seem close to solved now. But there has been less research in identifying regions associating actions with objects. Dense Image Captioning [8] is one such application, which localizes all the important regions in an image along with their description. Something very similar to normal image captioning, but repeated for every salient region in the image. In this paper, we address the aforementioned problem of detecting regions explaining the query caption. We use edge boxes for efficient object proposals, which we further filter down using a score measure. The object proposals are then captioned using a pretrained Inception [19] model. The captions of each of these regions are checked for similarity with the query caption using the skip-thought vectors [9]. This proposed framework produces interesting and efficient results. We provide a quantitative measure of our experiment by taking the intersection over union (IoU) with the ground truth on the visual genome [10] dataset. By combining the above techniques in an orderly manner, we have been able to achieve encouraging results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dollár, P., Zitnick, C.L.: Structured forests for fast edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1841–1848 (2013)
Dollár, P., Zitnick, C.L.: Fast edge detection using structured forests. IEEE Trans. Pattern Anal. Mach. Intell. 37(8), 1558–1570 (2015)
Erhan, D., Szegedy, C., Toshev, A., Anguelov, D.: Scalable object detection using deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2147–2154 (2014)
Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Johnson, J., Karpathy, A., Fei-Fei, L.: Densecap: Fully convolutional localization networks for dense captioning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4565–4574 (2016)
Kiros, R., Zhu, Y., Salakhutdinov, R.R., Zemel, R., Urtasun, R., Torralba, A., Fidler, S.: Skip-thought vectors. In: Advances in Neural Information Processing Systems, pp. 3294–3302 (2015)
Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J., Chen, S., Kalantidis, Y., Li, L.J., Shamma, D.A., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. 123(1), 32–73 (2017)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)
Pham, T.Q.: Non-maximum suppression using fewer than two comparisons per pixel. In: International Conference on Advanced Concepts for Intelligent Vision Systems, pp. 438–451. Springer (2010)
Pinheiro, P.O., Collobert, R., Dollár, P.: Learning to segment object candidates. In: Advances in Neural Information Processing Systems, pp. 1990–1998 (2015)
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)
Van de Sande, K.E., Uijlings, J.R., Gevers, T., Smeulders, A.W.: Segmentation as selective search for object recognition. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1879–1886. IEEE (2011)
Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229 (2013)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)
Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: lessons learned from the 2015 mscoco image captioning challenge. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 652–663 (2017)
Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: European Conference on Computer Vision, pp. 391–405. Springer (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Agrawal, P., Yadav, R., Yadav, V., De, K., Pratim Roy, P. (2020). Caption-Based Region Extraction in Images. In: Chaudhuri, B., Nakagawa, M., Khanna, P., Kumar, S. (eds) Proceedings of 3rd International Conference on Computer Vision and Image Processing. Advances in Intelligent Systems and Computing, vol 1024. Springer, Singapore. https://doi.org/10.1007/978-981-32-9291-8_3
Download citation
DOI: https://doi.org/10.1007/978-981-32-9291-8_3
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-32-9290-1
Online ISBN: 978-981-32-9291-8
eBook Packages: EngineeringEngineering (R0)